@article{SIGMA_2011_7_a87,
author = {Eric M. Rains},
title = {An {Isomonodromy} {Interpretation} of the {Hypergeometric} {Solution} of the {Elliptic} {Painlev\'e} {Equation} (and {Generalizations)}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a87/}
}
TY - JOUR AU - Eric M. Rains TI - An Isomonodromy Interpretation of the Hypergeometric Solution of the Elliptic Painlevé Equation (and Generalizations) JO - Symmetry, integrability and geometry: methods and applications PY - 2011 VL - 7 UR - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a87/ LA - en ID - SIGMA_2011_7_a87 ER -
%0 Journal Article %A Eric M. Rains %T An Isomonodromy Interpretation of the Hypergeometric Solution of the Elliptic Painlevé Equation (and Generalizations) %J Symmetry, integrability and geometry: methods and applications %D 2011 %V 7 %U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a87/ %G en %F SIGMA_2011_7_a87
Eric M. Rains. An Isomonodromy Interpretation of the Hypergeometric Solution of the Elliptic Painlevé Equation (and Generalizations). Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a87/
[1] Adler M., van Moerbeke P., “The spectrum of coupled random matrices”, Ann. of Math. (2), 149 (1999), 921–976 ; arXiv: hep-th/9907213 | DOI | MR | Zbl
[2] Arinkin D., Borodin A., “Moduli spaces of $d$-connections and difference Painlevé equations”, Duke Math. J., 134 (2006), 515–556 ; arXiv: math.AG/0411584 | DOI | MR | Zbl
[3] Arinkin D., Borodin A., Rains E.M., in preparation
[4] Birkhoff G.D., “General theory of linear difference equations”, Trans. Amer. Math. Soc., 12 (1911), 243–284 | DOI | MR | Zbl
[5] Borodin A., “Isomonodromy transformations of linear systems of difference equations”, Ann. of Math. (2), 160 (2004), 1141–1182 ; arXiv: math.CA/0209144 | DOI | MR
[6] Deift P.A., Orthogonal polynomials and random matrices: a Riemann–Hilbert approach, Courant Lecture Notes in Mathematics, 3, New York University, Courant Institute of Mathematical Sciences, New York, 1999 | MR
[7] van Diejen J.F., Spiridonov V.P., “An elliptic Macdonald–Morris conjecture and multiple modular hypergeometric sums”, Math. Res. Lett., 7 (2000), 729–746 | MR | Zbl
[8] Etingof P.I., Difference equations with elliptic coefficients and quantum affine algebras, arXiv: hep-th/9312057
[9] Etingof P.I., “Galois groups and connection matrices of $q$-difference equations”, Electron. Res. Announc. Amer. Math. Soc., 1:1 (1995), 1–9 | DOI | MR | Zbl
[10] Fokas A.S., Its A.R., Kitaev A.V., “The isomonodromy approach to matrix models in 2D quantum gravity”, Comm. Math. Phys., 147 (1992), 395–430 | DOI | MR | Zbl
[11] Forrester P.J., Witte N.S., “Bi-orthogonal polynomials on the unit circle, regular semi-classical weights and integrable systems”, Constr. Approx., 24 (2006), 201–237 ; arXiv: math.CA/0412394 | DOI | MR | Zbl
[12] Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., “${}_{10}E_9$ solution to the elliptic Painlevé equation”, J. Phys. A: Math. Gen., 36 (2003), L263–L272 ; arXiv: nlin.SI/0303032 | DOI | MR | Zbl
[13] Kitaev A.V., “Special functions of the isomonodromy type”, Acta Appl. Math., 64 (2000), 1–32 | DOI | MR | Zbl
[14] Russian Math. Surveys, 59:6 (2004), 1117–1154 ; arXiv: math-ph/0407018 | DOI | MR | Zbl
[15] Magnus A.P., “Painlevé-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials”, J. Comput. Appl. Math., 57 (1995), 215–237 ; arXiv: math.CA/9307218 | DOI | MR | Zbl
[16] Praagman C., “Fundamental solutions for meromorphic linear difference equations in the complex plane, and related problems”, J. Reine Angew. Math., 369 (1986), 101–109 | DOI | MR | Zbl
[17] van der Put M., Singer M.F., Galois theory of difference equations, Lecture Notes in Mathematics, 1666, Springer-Verlag, Berlin, 1997 | MR | Zbl
[18] Rains E.M., “Recurrences of elliptic hypergeometric integrals”, Elliptic Integrable Systems, Rokko Lectures in Mathematics, 18, eds. M. Noumi and K. Takasaki, Kobe University, 183–199, 2005; arXiv: math.CA/0504285
[19] Rains E.M., “Transformations of elliptic hypergeometric integrals”, Ann. of Math. (2), 171 (2010), 169–243 ; arXiv: math.QA/0309252 | DOI | MR | Zbl
[20] Ruijsenaars S.N.M., “A generalized hypergeometric function satisfying four analytic difference equations of Askey–Wilson type”, Comm. Math. Phys., 206 (1999), 639–690 | DOI | MR | Zbl
[21] Sakai H., “Rational surfaces associated with affine root systems and geometry of the Painlevé equations”, Comm. Math. Phys., 220 (2001), 165–229 | DOI | MR | Zbl
[22] Spiridonov V.P., “Elliptic beta integrals and special functions of hypergeometric type”, Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory (Kiev, 2000), NATO Sci. Ser. II Math. Phys. Chem., 35, Kluwer Acad. Publ., Dordrecht, 2001, 305–313 | MR | Zbl
[23] Russian Math. Surveys, 56:1 (2001), 185–186 | DOI | MR | Zbl
[24] Spiridonov V.P., “Classical elliptic hypergeometric functions and their applications”, Elliptic Integrable Systems, Rokko Lectures in Mathematics, 18, eds. M. Noumi and K. Takasaki, Kobe University, 2005, 253–288; arXiv: math.CA/0511579
[25] Szegő G., Orthogonal polynomials, American Mathematical Society Colloquium Publications, 23, American Mathematical Society, New York, 1939 | Zbl
[26] Yamada Y., “A Lax formalism for the elliptic difference Painlevé equation”, SIGMA, 5 (2009), 042, 15 pp. ; arXiv: 0811.1796 | DOI | MR | Zbl