@article{SIGMA_2011_7_a86,
author = {Martijn Caspers},
title = {Spherical {Fourier} {Transforms} on {Locally} {Compact} {Quantum} {Gelfand} {Pairs}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a86/}
}
Martijn Caspers. Spherical Fourier Transforms on Locally Compact Quantum Gelfand Pairs. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a86/
[1] Caspers M., “The $L^p$-Fourier transform on locally compact quantum groups”, J. Operator Theory (to appear)
[2] Caspers M., Koelink E., “Modular properties of matrix coefficients of corepresentations of a locally compact quantum group”, J. Lie Theory, 21 (2011), 905–928; arXiv: 1003.2278
[3] De Commer K., “On a correspondence between quantum $SU(2)$, quantum $E(2)$ and extended quantum $SU(1,1)$”, Comm. Math. Phys., 304 (2011), 187–228 ; arXiv: 1004.4307 | DOI | MR | Zbl
[4] Desmedt P., Aspects of the theory of locally compact quantum groups: Amenability–Plancherel measure, Ph.D. Thesis, Katholieke Universiteit Leuven, 2003
[5] van Dijk G., Introduction to harmonic analysis and generalized Gelfand pairs, de Gruyter Studies in Mathematics, 36, Walter de Gruyter Co., Berlin, 2009 | DOI | MR | Zbl
[6] Dixmier J., Les algèbres d'opérateurs dans l'espace hilbertien, Gauthiers-Villars, Paris, 1957 | MR | Zbl
[7] Dixmier J., Les $C^*$-algèbres et leurs représentations, Gauthiers-Villars, Paris, 1969 | MR
[8] Faraut J., “Analyse harmonique sur les paires de Guelfand et les espaces hyperboliques”, Analyse Harmonique (Universite de Nancy I, 1980), Les Cours du C.I.M.P.A., eds. J.L. Clerc et al., Centre International de Mathematiques Pures et Appliquees, Nice, France, 1983, 315–446 | MR
[9] Floris P.G.A., “Gel'fand pair criteria for compact matrix quantum groups”, Indag. Math. (N.S.), 6 (1995), 83–98 | DOI | MR | Zbl
[10] Groenevelt W., Koelink E., Kustermans J., “The dual quantum group for the quantum group analogue of the normalizer of $SU(1,1)$ in $SL(2,\mathbb{C})$”, Int. Math. Res. Not., 2010:7 (2010), 1167–1314 ; arXiv: 0905.2830 | DOI | MR | Zbl
[11] Kadison R.V., Ringrose J.R., Fundamentals of the theory of operator algebras, v. II, Graduate Studies in Mathematics, 16, Advanced theory, American Mathematical Society, Providence, RI, 1997 | MR | Zbl
[12] Kasprzak P., On a certain approach to quantum homogeneous spaces, arXiv: 1007.2438
[13] Koelink E., Kustermans J., “A locally compact quantum group analogue of the normalizer of $\mathrm{SU}(1,1)$ in $\mathrm{SL}(2,\mathbf C)$”, Comm. Math. Phys., 233 (2003), 231–296 ; arXiv: math.QA/0105117 | DOI | MR | Zbl
[14] Koelink E., Stokman J.V., “Fourier transforms on the quantum $SU(1,1)$ group, With an appendix by Mizan Rahman”, Publ. Res. Inst. Math. Sci., 37 (2001), 621–715 ; arXiv: math.QA/9911163 | DOI | MR | Zbl
[15] Koelink H.T., “Askey–Wilson polynomials and the quantum $SU(2)$ group: survey and applications”, Acta Appl. Math., 44 (1996), 295–352 | DOI | MR | Zbl
[16] Koelink H.T., “The quantum group of plane motions and the Hahn–Exton $q$-Bessel function”, Duke Math. J., 76 (1994), 483–508 | DOI | MR | Zbl
[17] Koornwinder T.H., “Positive convolution structures associated with quantum groups”, Probability Measures on Groups, X (Oberwolfach, 1990), Plenum, New York, 1991, 249–268 | MR | Zbl
[18] Kustermans J., “Locally compact quantum groups in the universal setting”, Internat. J. Math., 12 (2001), 289–338 ; arXiv: math.OA/9902015 | DOI | MR | Zbl
[19] Kustermans J., “Locally compact quantum groups”, Quantum Independent Increment Processes. I, Lecture Notes in Math., 1865, Springer, Berlin, 2005, 99–180 | DOI | MR | Zbl
[20] Kustermans J., One-parameter representations of C$^\ast$-algebras, arXiv: funct-an/9707009
[21] Kustermans J., Vaes S., “Locally compact quantum groups”, Ann. Sci. École Norm. Sup. (4), 33 (2000), 837–934 | DOI | MR | Zbl
[22] Kustermans J., Vaes S., “Locally compact quantum groups in the von Neumann algebraic setting”, Math. Scand., 92 (2003), 68–92 ; arXiv: math.OA/0005219 | MR | Zbl
[23] Lance C., “Direct integrals of left Hilbert algebras”, Math. Ann., 216 (1975), 11–28 | DOI | MR | Zbl
[24] Noumi M., Yamada H., Mimachi K., “Finite-dimensional representations of the quantum group $GL_q(n, \mathbb{C})$ and the zonal spherical functions on $U_q(n-1)\backslash U_q(n)$”, Japan. J. Math. (N.S.), 19 (1993), 31–80 | MR | Zbl
[25] Nussbaum A.E., “Reduction theory for unbounded closed operators in Hilbert space”, Duke Math. J., 31 (1964), 33–44 | DOI | MR | Zbl
[26] Podkolzin G.B., Vainerman L.I., “Quantum Stiefel manifold and double cosets of quantum unitary group”, Pacific J. Math., 188 (1999), 179–199 | DOI | MR | Zbl
[27] Raeburn I., Williams D.P., Morita equivalence and continuous-trace $C^\ast$-algebras, Mathematical Surveys and Monographs, 60, American Mathematical Society, Providence, RI, 1998 | MR | Zbl
[28] Salmi P., Skalski A., “Idempotent states on locally compact quantum groups”, Quart. J. Math. (to appear) | DOI
[29] Takesaki M., Theory of operator algebras. I, Springer-Verlag, New York – Heidelberg, 1979 | MR
[30] Takesaki M.,, Theory of operator algebras. II, Springer-Verlag, Berlin, 2003 | MR
[31] Timmermann T., An invitation to quantum groups and duality. From Hopf algebras to multiplicative unitaries and beyond, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, 2008 | DOI | MR | Zbl
[32] Tomatsu R., “A characterization of right coideals of quotient type and its application to classification of Poisson boundaries”, Comm. Math. Phys., 275 (2007), 271–296 ; arXiv: math.OA/0611327 | DOI | MR | Zbl
[33] Vaes S., “A new approach to induction and imprimitivity results”, J. Funct. Anal., 229 (2005), 317–374 ; arXiv: math.OA/0407525 | DOI | MR | Zbl
[34] Vaes S., “A Radon–Nikodym theorem for von Neumann algebras”, J. Operator Theory, 46 (2001), 477–489 ; arXiv: math.OA/9811122 | MR | Zbl
[35] Vaes S., “The unitary implementation of a locally compact quantum group action”, J. Funct. Anal., 180 (2001), 426–480 ; arXiv: math.OA/0005262 | DOI | MR | Zbl
[36] Vaes S., Vainerman L.I., “Extensions of locally compact quantum groups and the bicrossed product construction”, Adv. Math., 175 (2003), 1–101 ; arXiv: math.OA/0101133 | DOI | MR | Zbl
[37] Vaes S., Vainerman L.I., “On low-dimensional locally compact quantum groups”, Locally Compact Quantum Groups and Groupoids (Strasbourg, 2002), IRMA Lect. Math. Theor. Phys., 2, de Gruyter, Berlin, 2003, 127–187 ; arXiv: math.QA/0207271 | MR | Zbl
[38] Vainerman L.I., “Gel'fand pair associated with the quantum group of motions of the plane and $q$-Bessel functions”, Rep. Math. Phys., 35 (1995), 303–326 | DOI | MR | Zbl
[39] Vainerman L.I., “Gel'fand pairs of quantum groups, hypergroups and $q$-special functions”, Applications of Hypergroups and Related Measure Algebras (Seattle, WA, 1993), Contemp. Math., 183, Amer. Math. Soc., Providence, RI, 1995, 373–394 | MR
[40] Vainerman L.I., “Hypergroup structures associated with Gel'fand pairs of compact quantum groups”, Recent Advances in Operator Algebras (Orléans, 1992), Asterisque, 232, 1995, 231–242 | MR | Zbl
[41] Van Daele A., “The Fourier transform in quantum group theory”, New Techniques in Hopf Algebras and Graded Ring Theory, K. Vlaam. Acad. Belgie Wet. Kunsten (KVAB), Brussels, 2007, 187–196 | MR | Zbl
[42] Van Daele A., Locally compact quantum groups. A von Neumann algebra approach, arXiv: math.OA/0602212
[43] Vilenkin N.Ja., Klimyk A.U., Representations of Lie groups and special functions, v. 1, Simplest Lie groups, special functions and integral transforms, Kluwer Academic Publishers Group, 1991 | MR | Zbl
[44] Vogan D.A., Representations of real reductive Lie groups, Progress in Mathematics, 15, Birkhäuser, Boston, Mass., 1981 | MR | Zbl