@article{SIGMA_2011_7_a85,
author = {Arno R. Bohm and Manuel Gadella and Piotr Kielanowski},
title = {Time {Asymmetric} {Quantum} {Mechanics}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a85/}
}
Arno R. Bohm; Manuel Gadella; Piotr Kielanowski. Time Asymmetric Quantum Mechanics. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a85/
[1] Lee T.D., Particle physics and introduction to field theory, Chapter 13, Contemporary Concepts in Physics, 1, Harwood Academic Publishers, Chur, 1981 | MR
[2] Bohm A., Harshman N.L., “Quantum theory in rigged Hilbert space: irreversibility from causality”, Irreversibility and Causality, Semigroups and Rigged Hilbert Spaces (Goslar, 1996), Lecture Notes in Phys., 504, eds. A. Bohm, H.D. Doebner and P. Kielanowski, Springer, Berlin, 1998, 181–237 ; arXiv: quant-ph/9805063 | DOI | MR
[3] Bohm A., “Time-asymmetric quantum physics”, Phys. Rev. A, 60 (1999), 861–876, arXiv: quant-ph/9902085 | DOI | MR
[4] Bohm A., Loewe M., Van de Ven B., “Time asymmetric quantum theory. I. Modifying an axiom of quantum physics”, Fortschr. Phys., 51 (2003), 551–568 ; arXiv: quant-ph/0212130 | DOI | MR | Zbl
[5] Bohm A., Kaldass H., Wickramasekara S., “Time asymmetric quantum theory. II. Relativistic resonances from $S$-matrix poles”, Fortschr. Phys., 51 (2003), 569–603 ; arXiv: hep-th/0212280 | DOI | MR | Zbl
[6] Bohm A., Kaldass H., Wickramasekara S., “Time asymmetric quantum theory. III. Decaying states and the causal Poincaré semigroup”, Fortschr. Phys., 51 (2003), 604–634 ; arXiv: hep-th/0212282 | DOI | MR | Zbl
[7] Bohm A., Sato Y., “Relativistic resonances: their masses, widths, lifetimes, superposition, and causal evolution”, Phys. Rev. D, 71 (2005), 085018, 22 pp. ; arXiv: hep-ph/0412106 | DOI
[8] Bohm A., Bryant P.W., “From Hardy spaces to quantum jumps: a quantum mechanical beginning of time”, Internat. J. Theoret. Phys., 50 (2011), 2094–2105 ; arXiv: arXiv:1011.4954 | DOI
[9] Gel'fand I.M., Vilenkin N.Ya., Generalized functions, v. 4, Applications of harmonic analysis, Academic Press, New York, 1964
[10] Maurin K., Generalized eigenfunction expansions and unitary representations of topological groups, Polish Scientific Publishers, Warszawa, 1968 | MR | Zbl
[11] Dirac P.A.M., The principles of quantum mechanics, Clarendon Press, Oxford, 1930 | MR
[12] Bohm A., “Rigged Hilbert space and the mathematical description of physical systems”, Boulder Lecture Notes in Theoretical Physics, 9A, Gordon and Breach Science Publishers, New York, 1967, 255–317 | MR
[13] Bohm A., Gadella M., Dirac kets, Gamow vectors and Gel'fand triplets, Lecture Notes in Physics, 348, Springer-Verlag, Berlin, 1989 | DOI | MR | Zbl
[14] Gadella M., Gómez F., “A unified mathematical formalism for the Dirac formulation of quantum mechanics”, Found. Phys., 32 (2002), 815–869 | DOI | MR
[15] Civitarese O., Gadella M., “Physical and mathematical aspects of Gamow states”, Phys. Rep., 396 (2004), 41–113 | DOI | MR
[16] Baumgärtel H., “Time asymmetry in quantum mechanics: a pure mathematical point of view”, J. Phys. A: Math. Theor., 41 (2008), 304017, 7 pp. | DOI | MR
[17] Baumgärtel H., “Resonances of quantum mechanical scattering systems and Lax–Phillips scattering theory”, J. Math. Phys., 51 (2010), 113508, 20 pp. | DOI | MR
[18] Paley R., Wiener N., Fourier transforms in the complex domain, American Mathematical Society Colloquium Publications, 19, American Mathematical Society, Providence, RI, 1934 | MR
[19] van Winter C., “Complex dynamical variables for multiparticle systems with analytic interactions. I”, J. Math. Anal. Appl., 47 (1974), 633–670 | DOI | MR | Zbl
[20] Lippmannn B.A., Schwinger J., “Variational principles for scattering processes. I”, Phys. Rev., 79 (1950), 469–480 | DOI | MR
[21] Gell-Mann M., Goldberger H.L., “The formal theory of scattering”, Phys. Rev., 91 (1953), 398–408 | DOI | MR | Zbl
[22] Goldberger M.L., Watson K.M., Collision theory, John Wiley Sons, Inc., New York – London – Sydney, 1964 | MR
[23] Gadella M., Gómez F., “The Lippmann–Schwinger equations in the rigged Hilbert space”, J. Phys. A: Math. Gen., 35 (2002), 8505–8511 | DOI | MR | Zbl
[24] Bohm A., Quantum mechanics, Texts and Monographs in Physics, 2nd ed., Springer-Verlag, New York, 1986, Chapter XXI | MR | Zbl
[25] Baumgärtel H., A private communication \footnote{H. Baumgartel identified these energy wave functions from their required properties as Hardy functions.} to A. Bohm, 1978
[26] Baumgärtel H., “Generalized eigenvectors for resonances in the Friedrichs model and their associated Gamow vectors”, Rev. Math. Phys., 16 (2006), 61–78 ; “Addendum”, Rev. Math. Phys., 19 (2007), 227–229 ; arXiv: math-ph/0509062 | DOI | MR | DOI | MR
[27] Baumgärtel H., “Time asymmetry in quantum mechanics: a pure mathematical point of view”, J. Phys. A: Math. Theor., 41 (2008), 304017, 7 pp. | DOI | MR
[28] Duren P.L., “Theory of $H^{p}$ spaces”, Pure and Applied Mathematics, 38, Academic Press, New York – London, 1970 | MR