@article{SIGMA_2011_7_a84,
author = {Mehdi Rafie-Rad and Bahman Rezaei},
title = {On the {Projective} {Algebra} of {Randers} {Metrics} of {Constant} {Flag} {Curvature}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a84/}
}
TY - JOUR AU - Mehdi Rafie-Rad AU - Bahman Rezaei TI - On the Projective Algebra of Randers Metrics of Constant Flag Curvature JO - Symmetry, integrability and geometry: methods and applications PY - 2011 VL - 7 UR - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a84/ LA - en ID - SIGMA_2011_7_a84 ER -
Mehdi Rafie-Rad; Bahman Rezaei. On the Projective Algebra of Randers Metrics of Constant Flag Curvature. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a84/
[1] Akbar-Zadeh H., “Champs de vecteurs projectifs sur le fibré unitaire”, J. Math. Pures Appl. (9), 65 (1986), 47–79 | MR | Zbl
[2] Akbar-Zadeh H., “Sur les espaces de Finsler à courbures sectionelles constantes”, Acad. Roy. Belg. Bull. Cl. Sci. (5), 74:10 (1988), 281–322 | MR | Zbl
[3] Akbar-Zadeh H., “Espaces à tenseurs de Ricci parallèle admettant des transformations projectives”, Rend. Mat. (6), 11 (1978), 85–96 | MR | Zbl
[4] Akbar-Zadeh H., “Generalized Einstein manifolds”, J. Geom. Phys., 17 (1995), 342–380 | DOI | MR | Zbl
[5] Bao D., Robles C., “On Randers metrics of constant curvature”, Rep. Math. Phys., 51 (2003), 9–42 | DOI | MR | Zbl
[6] Bao D., Shen Z., “Finsler metrics of constant positive curvature on the Lie group $S^3$”, J. Lond. Math. Soc., 66 (2002), 453–467 | DOI | MR | Zbl
[7] Barnes A., “Projective collineations in Einstein spaces”, Classical Quantum Gravity, 10 (1993), 1139–1145 | DOI | MR | Zbl
[8] Gibbons G.W., Herdeiro C.A.R., Warnick C.M., Werner M.C., “Stationary metrics and optical Zermelo–Randers–Finsler geometry”, Phys. Rev. D, 79 (2009), 044022, 21 pp. ; arXiv: 0811.2877 | DOI | MR
[9] Hall G.S., Lonie D.P., “The principle of equivalence and cosmological metrics”, J. Math. Phys., 49 (2008), 022502, 13 pp. | DOI | MR | Zbl
[10] Hiramato H., “Riemannian manifolds admitting a projective vector field”, Kodai Math. J., 3 (1980), 397–406 | DOI | MR
[11] Israel I., Relativity, astrophysics and cosmology, Dordrecht, Boston, 1973
[12] Miron R., “Finsler–Lagrange spaces with $(\alpha,\beta)$-metrics and Ingarden spaces”, Rep. Math. Phys., 58 (2006), 417–431 | DOI | MR | Zbl
[13] Mo X., “On the non-Riemannian quantity $H$ of a Finsler metric”, Differential. Geom. Appl., 27 (2009), 7–14 | DOI | MR
[14] Mo X., “A global classification result for Randers metrics of scalar curvature on closed manifolds”, Nonlinear Anal., 69 (2008), 2996–3004 | DOI | MR | Zbl
[15] Najafi B., Shen Z., Tayebi A., “Finsler metrics of scalar flag curvature with special non-Riemannian curvature properties”, Geom. Dedicata, 131 (2008), 87–97 | DOI | MR | Zbl
[16] Najafi B., Tayebi A., “A new quantity in Finsler geometry”, C. R. Math. Acad. Sci. Paris, 349 (2011), 81–83 | DOI | MR | Zbl
[17] Obata M., “Certain conditions for a Riemannian manifold to be isometric with a sphere”, J. Math. Soc. Japan., 14 (1962), 333–340 | DOI | MR | Zbl
[18] Randers G., “On an asymmetric metric in the four-space of general relativity”, Phys. Rev., 59 (1941), 195–199 | DOI | MR
[19] Robles C., Einstein metrics of Randers type, Ph.D. thesis, University of British Columbia, Canada, 2003 | MR
[20] Shen Y., Yu Y., “On projectively related Randers metric”, Internat. J. Math., 19 (2008), 503–520 | DOI | MR | Zbl
[21] Shen Z., Differential geometry of spray and Finsler spaces, Kluwer Academic Publishers, Dordrecht, 2001 | MR
[22] Shen Z., “Projectively flat Finsler metrics of constant flag curvature”, Trans. Amer. Math. Soc., 355 (2002), 1713–1728 | DOI | MR
[23] Shen Z.M., Xing H., “On Randers metrics of isotropic $S$-curvature”, Acta Math. Sin. (Engl. Ser.), 24 (2008), 789–796 | DOI | MR | Zbl
[24] Stavrinos P.C., “Gravitational and cosmological considerations based on the Finsler and Lagrange metric structures”, Nonlinear Anal., 71 (2009), e1380–e1392 | DOI | MR
[25] Tanno S., “Some differential equations on Riemannian manifolds”, J. Math. Soc. Japan, 30 (1978), 509–531 | DOI | MR | Zbl
[26] Tashiro Y., “Complete Riemannian manifolds and some vector fields”, Trans. Amer. Math. Soc., 117 (1965), 251–275 | DOI | MR | Zbl
[27] Yamauchi K., “On infinitesimal projective transformations of a Riemannian manifold with constant scalar curvature”, Hokkaido. Math. J., 8 (1979), 167–175 | MR | Zbl
[28] Yano K., The theory of Lie derivatives and its applications, North Holland, Amsterdam, 1957 | MR | Zbl