Para-Grassmannian Coherent and Squeezed States for Pseudo-Hermitian $q$-Oscillator and their Entanglement
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this parer, $q$-deformed oscillator for pseudo-Hermitian systems is investigated and pseudo-Hermitian appropriate coherent and squeezed states are studied. Also, some basic properties of these states is surveyed. The over-completeness property of the para-Grassmannian pseudo-Hermitian coherent states (PGPHCSs) examined, and also the stability of coherent and squeezed states discussed. The pseudo-Hermitian supercoherent states as the product of a pseudo-Hermitian bosonic coherent state and a para-Grassmannian pseudo-Hermitian coherent state introduced, and the method also developed to define pseudo-Hermitian supersqueezed states. It is also argued that, for $q$-oscillator algebra of $k+1$ degree of nilpotency based on the changed ladder operators, defined in here, we can obtain deformed $SU_{q^2}(2)$ and $SU_{q^{2k}}(2)$ and also $SU_{q^{2k}}(1,1)$. Moreover, the entanglement of multi-level para-Grassmannian pseudo-Hermitian coherent state will be considered. This is done by choosing an appropriate weight function, and integrating over tensor product of PGPHCSs.
Keywords: para-Grassmann variables; coherent state; squeezed state; pseudo-Hermiticity; entanglement.
@article{SIGMA_2011_7_a83,
     author = {Yusef Maleki},
     title = {Para-Grassmannian {Coherent} and {Squeezed} {States} for {Pseudo-Hermitian} $q${-Oscillator} and their {Entanglement}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a83/}
}
TY  - JOUR
AU  - Yusef Maleki
TI  - Para-Grassmannian Coherent and Squeezed States for Pseudo-Hermitian $q$-Oscillator and their Entanglement
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a83/
LA  - en
ID  - SIGMA_2011_7_a83
ER  - 
%0 Journal Article
%A Yusef Maleki
%T Para-Grassmannian Coherent and Squeezed States for Pseudo-Hermitian $q$-Oscillator and their Entanglement
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a83/
%G en
%F SIGMA_2011_7_a83
Yusef Maleki. Para-Grassmannian Coherent and Squeezed States for Pseudo-Hermitian $q$-Oscillator and their Entanglement. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a83/

[1] Bender C.M., Boettcher S., “Real spectra in non-Hermitian Hamiltonians having $\mathcal{PT}$ symmetry”, Phys. Rev. Lett., 80 (1998), 5243–5246 ; arXiv: math-ph/9712001 | DOI | MR | Zbl

[2] Bender C.M., Boettcher S., Meisenger P.N., “$\mathcal{PT}$-symmetric quantum mechanics”, J. Math. Phys., 40 (1999), 2201–2229 ; arXiv: quant-ph/9809072 | DOI | MR | Zbl

[3] Bender C.M., Dunne G.V., “Large-order perturbation theory for a non-Hermitian $\mathcal{PT}$-symmetric Hamiltonian”, J. Math. Phys., 40 (1999), 4616–4621 ; arXiv: quant-ph/9812039 | DOI | MR | Zbl

[4] Mostafazadeh A., “Pseudo-Hermiticity and generalized $PT$- and $CPT$-symmetries”, J. Math. Phys., 44 (2003), 974–989 ; arXiv: math-ph/0209018 | DOI | MR | Zbl

[5] Mostafazadeh A., “Pseudo-Hermiticity versus $PT$ symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian”, J. Math. Phys., 43 (2002), 205–214 ; arXiv: math-ph/0107001 | DOI | MR | Zbl

[6] Mostafazadeh A., “Pseudo-Hermiticity versus $PT$-symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum”, J. Math. Phys., 43 (2002), 2814–2816 ; arXiv: math-ph/0110016 | DOI | MR | Zbl

[7] Perlomov A., Generalized coherent states and their applications, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1986 | MR

[8] Fujii K., Introduction to coherent states and quantum information theory, arXiv: quant-ph/0112090

[9] Najarbashi G., Maleki Y., “Maximal entanglement of two-qubit states constructed by linearly independent coherent states”, Internat. J. Theoret. Phys., 50 (2011), 2601–2608 ; arXiv: 1007.1387 | DOI

[10] Najarbashi G., Maleki Y., “Entanglement of Grassmannian coherent states for multi-partite $n$-level systems”, SIGMA, 7 (2011), 011, 11 pp. ; arXiv: 1008.4836 | DOI | MR | Zbl

[11] Najarbashi G., Maleki Y., Entanglement in multi-qubit pure fermionic coherent states, arXiv: 1004.3703

[12] Fu H., Wang X., Solomon A.I., “Maximal entanglement of nonorthogonal states: classification”, Phys. Lett. A, 291 (2001), 73–76 ; arXiv: quant-ph/0105099 | DOI | MR | Zbl

[13] Wang X., Sanders B.C., “Multipartite entangled coherent states”, Phys. Rev. A, 65 (2001), 012303, 7 pp. ; arXiv: quant-ph/0104011 | DOI | MR

[14] Wang X., “Bipartite entangled non-orthogonal states”, J. Phys. A: Math. Gen., 35 (2002), 165–173 ; arXiv: quant-ph/0102011 | DOI | MR | Zbl

[15] Wang X., Sanders B.C., Pan S.-H., “Entangled coherent states for systems with $SU(2)$ and $SU(1,1)$ symmetries”, J. Phys. A: Math. Gen., 33 (2000), 7451–7467 ; arXiv: quant-ph/0001073 | DOI | MR | Zbl

[16] El Baz M., Hassouni Y., “On the construction of generalized Grassmann representatives of state vectors”, J. Phys. A: Math. Gen., 37 (2004), 4361–4368 ; arXiv: math-ph/0409038 | DOI | MR | Zbl

[17] El Baz M., On the construction of generalized Grassmann coherent states, arXiv: math-ph/0511028

[18] El Baz M., Hassouni Y., Madouri F., “$Z_3$-graded Grassmann variables, parafermions and their coherent states”, Phys. Lett. B, 536 (2002), 321–326 ; arXiv: math-ph/0206017 | DOI | MR | Zbl

[19] Cahill K.E., Glauber R.J., “Density operators for fermions”, Phys. Rev. A, 59 (1999), 1538–1555 ; arXiv: physics/9808029 | DOI

[20] Mansour T., Schork M., “On linear differential equations with variable coefficients involving a para-Grassmann variable”, J. Math. Phys., 51 (2010), 043512, 21 pp. | DOI | MR

[21] Mansour T., Schork M., “On linear differential equations involving a paragrassmann variable”, SIGMA, 5 (2009), 073, 26 pp. ; arXiv: 0907.2584 | DOI | MR | Zbl

[22] Cabra D.C., Moreno E.F., Tanasa A., “Para-Grassmann variables and coherent states”, SIGMA, 2 (2006), 087, 8 pp. ; arXiv: hep-th/0609217 | DOI | MR | Zbl

[23] Trifonov D.A., “Pseudo-boson coherent and Fock states”, Trends in Differential Geometry, Complex Analysis and Mathematical Physics, eds. K. Sekigawa et al., World Scientific, 2009, 241–250 ; arXiv: 0902.3744 | DOI | Zbl

[24] Cherbal O., Drir M., Maamache M., Trifonov D.A., “Fermionic coherent states for pseudo-Hermitian two-level systems”, J. Phys. A: Math. Theor., 40 (2007), 1835–1844 ; arXiv: quant-ph/0608177 | DOI | MR | Zbl

[25] Najarbashi G., Fasihi M.A., Fakhri H., “Generalized Grassmannian coherent states for pseudo-Hermitian $n$-level systems”, J. Phys. A: Math. Theor., 43 (2010), 325301, 10 pp. ; arXiv: 1007.1392 | DOI | MR | Zbl

[26] Daoud M., Hassouni Y., Kibler M., “On generalized super-coherent states”, Phys. Atomic Nuclei, 61 (1998), 1821–1824 ; arXiv: quant-ph/9804046 | MR

[27] Daoud M., Kibler M., A fractional supersymmetric oscillator and its coherent states, arXiv: math-ph/9912024

[28] Nieto M.M., “Coherent states and squeezed states, supercoherent states and supersqueezed states”, On Klauder's Path: a Field Trip, World Sci. Publ., River Edge, NJ, 1994, 147–155 ; arXiv: hep-th/9212116 | MR | Zbl

[29] Nielsen M.A., Chuang I.L., Quantum computation and quantum information, Cambridge University Press, Cambridge, 2000 | MR

[30] Petz D., Quantum information theory and quantum statistics, Springer-Verlag, Berlin, 2008 | MR | Zbl

[31] Majid S., Rodríguez-Plaza M.J., “Random walk and the heat equation on superspace and anyspace”, J. Math. Phys., 35 (1994), 3753–3760 | DOI | MR | Zbl

[32] Kerner R., “$Z_3$-graded algebras and the cubic root of the supersymmetry translations”, J. Math. Phys., 33 (1992), 403–411 | DOI | MR

[33] Filippov A.T., Isaev A.P., Kurdikov A.B., “Para-Grassmann differential calculus”, Theoret. and Math. Phys., 94 (1993), 150–165 ; arXiv: hep-th/9210075 | DOI | MR | Zbl

[34] Isaev A.P., “Para-Grassmann integral, discrete systems and quantum groups”, Internat. J. Modern Phys. A, 12 (1997), 201–206 ; arXiv: q-alg/9609030 | DOI | MR | Zbl

[35] Cugliandolo L.F., Lozano G.S., Moreno E.F., Schaposnik F.A., “A note on Gaussian integrals over para-Grassmann variables”, Internat. J. Modern Phys. A, 19 (2004), 1705–1714 ; arXiv: hep-th/0209172 | DOI | MR | Zbl

[36] Ilinski K.N., Kalinin G.V., Stepanenko A.S., “$q$-functional Wick's theorems for particles with exotic statistics”, J. Phys. A: Math. Gen., 30 (1997), 5299–5310 ; arXiv: hep-th/9704181 | DOI | MR | Zbl

[37] El Baz M., Fresneda R., Gazeau J.P., Hassouni Y., “Coherent state quantization of paragrassmann algebras”, J. Phys. A: Math. Theor., 43 (2010), 385202, 15 pp. ; arXiv: 1004.4706 | DOI | MR | Zbl

[38] Chaichian M., Demichev A.P., “Polynomial algebras and higher spins”, Phys. Lett. A, 222 (1996), 14–20 ; arXiv: hep-th/9602008 | DOI | MR | Zbl

[39] Daoud M., Kibler M., “Fractional supersymmetric quantum mechanics as a set of replicas of ordinary supersymmetric quantum mechanics”, Phys. Lett. A, 321 (2004), 147–151 ; arXiv: math-ph/0312019 | DOI | MR | Zbl

[40] Cherbal O., Drir M., Maamache M., Trifonov D.A., “Supersymmetric extension of non-Hermitian $su(2)$ Hamiltonian and supercoherent states”, SIGMA, 6 (2010), 096, 11 pp. ; arXiv: 1009.5293 | DOI | MR | Zbl