@article{SIGMA_2011_7_a82,
author = {Marc Geiller and Marc Lachi\`eze-Rey and Karim Noui and Francesco Sardelli},
title = {A {Lorentz-Covariant} {Connection} for {Canonical} {Gravity}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a82/}
}
TY - JOUR AU - Marc Geiller AU - Marc Lachièze-Rey AU - Karim Noui AU - Francesco Sardelli TI - A Lorentz-Covariant Connection for Canonical Gravity JO - Symmetry, integrability and geometry: methods and applications PY - 2011 VL - 7 UR - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a82/ LA - en ID - SIGMA_2011_7_a82 ER -
%0 Journal Article %A Marc Geiller %A Marc Lachièze-Rey %A Karim Noui %A Francesco Sardelli %T A Lorentz-Covariant Connection for Canonical Gravity %J Symmetry, integrability and geometry: methods and applications %D 2011 %V 7 %U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a82/ %G en %F SIGMA_2011_7_a82
Marc Geiller; Marc Lachièze-Rey; Karim Noui; Francesco Sardelli. A Lorentz-Covariant Connection for Canonical Gravity. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a82/
[1] Ashtekar A., “New variables for classical and quantum gravity”, Phys. Rev. Lett., 57 (1986), 2244–2247 | DOI | MR
[2] Barbero J.F., “Real Ashtekar variables for Lorentzian signature space-times”, Phys. Rev. D, 51 (1995), 5507–5510 ; arXiv: gr-qc/9410014 | DOI | MR
[3] Immirzi G., “Real and complex connections for canonical gravity”, Classical Quantum Gravity, 14 (1997), L177–L181 ; arXiv: gr-qc/9612030 | DOI | MR | Zbl
[4] Holst S., “Barbero's Hamiltonian derived from a generalized Hilbert–Palatini action”, Phys. Rev. D, 53 (1996), 5966–5969, arXiv: gr-qc/9511026 | DOI | MR
[5] Ashtekar A., Lewandowski J., “Quantum theory of geometry. I. Area operators”, Classical Quantum Gravity, 14 (1997), A55–A81 ; arXiv: gr-qc/9602046 | DOI | MR | Zbl
[6] Rovelli C., Smolin L., “Discreteness of area and volume in quantum gravity”, Nuclear Phys. B, 442 (1995), 593–619 ; arXiv: gr-qc/9411005 | DOI | MR | Zbl
[7] Agulló I., Barbero J.F., Díaz-Polo J., Fernández-Borja E., Villaseñor E.J.S., “Black hole state counting in loop quantum gravity: a number-theoretical approach”, Phys. Rev. Lett., 100 (2008), 211301, 4 pp. ; arXiv: gr-qc/0005126 | DOI | MR
[8] Ashtekar A., Baez J.C., Krasnov K., “Quantum geometry of isolated horizons and black hole entropy”, Adv. Theor. Math. Phys., 4 (2000), 1–94 ; arXiv: gr-qc/0005126 | MR | Zbl
[9] Meissner K.A., “Black-hole entropy in loop quantum gravity”, Classical Quantum Gravity, 21 (2004), 5245–5251 ; arXiv: gr-qc/0407052 | DOI | MR | Zbl
[10] Rovelli C., “Black hole entropy from loop quantum gravity”, Phys. Rev. Lett., 77 (1996), 3288–3291 ; arXiv: gr-qc/9603063 | DOI | MR | Zbl
[11] Rovelli C., Thiemann T., “The Immirzi parameter in quantum general relativity”, Phys. Rev. D, 57 (1998), 1009–1014 ; arXiv: gr-qc/9705059 | DOI | MR
[12] Henneaux M., Teitelboim C., Quantization of gauge systems, Princeton University Press, Princeton, NJ, 1992 | MR | Zbl
[13] Alexandrov S.Yu., Vassilevich D.V., “Path integral for the Hilbert–Palatini and Ashtekar gravity”, Phys. Rev. D, 58 (1998), 124029, 13 pp. ; arXiv: gr-qc/9806001 | DOI | MR
[14] Alexandrov S., “$\mathrm{SO}(4,\mathbf C)$-covariant Ashtekar–Barbero gravity and the Immirzi parameter”, Classical Quantum Gravity, 17 (2000), 4255–4268 ; arXiv: gr-qc/0005085 | DOI | MR | Zbl
[15] Alexandrov S., Vassilevich D., “Area spectrum in Lorentz-covariant loop gravity”, Phys. Rev. D, 64 (2001), 044023, 7 pp. ; arXiv: gr-qc/0103105 | DOI | MR
[16] Alexandrov S., Livine E.R., “SU(2) loop quantum gravity seen from covariant theory”, Phys. Rev. D, 67 (2003), 044009, 15 pp. ; arXiv: gr-qc/0209105 | DOI | MR
[17] Barros e Sá N., “Hamiltonian analysis of general relativity with the Immirzi parameter”, Internat. J. Modern Phys. D, 10 (2001), 261–272 ; arXiv: gr-qc/0006013 | DOI | MR | Zbl
[18] Peldán P., “Actions for gravity, with generalizations: a review”, Classical Quantum Gravity, 11 (1994), 1087–1132 ; arXiv: gr-qc/9305011 | DOI | MR
[19] Geiller M., Lachièze-Rey M., Noui K., “A new look at Lorentz-covariant loop quantum gravity”, Phys. Rev. D, 84 (2011), 044002, 19 pp. ; arXiv: 1105.4194 | DOI
[20] Cianfrani F., Montani G., “Towards loop quantum gravity without the time gauge”, Phys. Rev. Lett., 102 (2009), 091301 ; arXiv: 0811.1916 | DOI | MR
[21] Samuel J., “Is Barbero's Hamiltonian formulation a gauge theory of Lorentzian gravity?”, Classical Quantum Gravity, 17 (2000), L141–L148 ; arXiv: gr-qc/0005095 | DOI | MR | Zbl
[22] Rovelli C., Speziale S., “Lorentz covariance of loop quantum gravity”, Phys. Rev. D, 83 (2011), 104029, 6 pp. ; arXiv: 1012.1739 | DOI
[23] Engle J., Livine E., Pereira R., Rovelli C., “LQG vertex with finite Immirzi parameter”, Nuclear Phys. B, 799 (2008), 136–149 ; arXiv: 0711.0146 | DOI | MR | Zbl
[24] Freidel L., Krasnov K., “A new spin foam model for 4D gravity”, Classical Quantum Gravity, 25 (2008), 125018, 36 pp. ; arXiv: 0708.1595 | DOI | MR | Zbl