@article{SIGMA_2011_7_a81,
author = {Francesco Calogero},
title = {Discrete-Time {Goldfishing}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a81/}
}
Francesco Calogero. Discrete-Time Goldfishing. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a81/
[1] Calogero F., “Motion of poles and zeros of special solutions of nonlinear and linear partial differential equations, and related “solvable” many body problems”, Nuovo Cimento B, 43 (1978), 177–241 | DOI | MR
[2] Calogero F., “The neatest many-body problem amenable to exact treatments (a “goldfish”?)”, Phys. D, 152/153 (2001), 78–84 | DOI | MR | Zbl
[3] Ruijsenaars S.N.M., Schneider H., “A new class of integrable systems and its relation to solitons”, Ann. Physics, 170 (1986), 370–405 | DOI | MR | Zbl
[4] Calogero F., Classical many-body problems amenable to exact treatments, Lecture Notes in Physics, New Series m: Monographs, 66, Springer-Verlag, Berlin, 2001 | MR | Zbl
[5] Gómez-Ullate D., Sommacal M., “Periods of the goldfish many-body problem”, J. Nonlinear Math. Phys., 12:1 (2005), 351–362 | DOI | MR
[6] Calogero F., Isochronous systems, Oxford University Press, Oxford, 2008 | DOI | MR | Zbl
[7] Calogero F., “Two new solvable dynamical systems of goldfish type”, J. Nonlinear Math. Phys., 17 (2010), 397–414 | DOI | MR | Zbl
[8] Calogero F., “A new goldfish model”, Theoret. and Math. Phys., 167 (2011), 714–724 | DOI
[9] Calogero F., “Another new goldfish model”, Theoret. and Math. Phys. (to appear)
[10] Calogero F., The discrete-time goldfish, unpublished
[11] Veselov A.P., “Integrable maps”, Russian Math. Surveys, 46:5 (1991), 1–51 | DOI | MR | Zbl
[12] Clarkson P.A., Nijhoff F.W. (Editors), Symmetries and integrability of difference equations, London Mathematical Society Lecture Notes Series, 255, Cambridge University Press, Cambridge, 1999 | DOI | MR | Zbl
[13] Suris Yu.B., The problem of integrable discretization: Hamiltonian approach, Progress in Mathematics, 219, Birkhäuser, Basel, 2003 | MR | Zbl
[14] Ragnisco O., “Discrete integrable systems”, Encyclopedia of Mathematical Physics, v. 3, Elsevier, Oxford, 2006, 59–65
[15] Bobenko A.I., Suris Yu.B., Discrete differential geometry. Integrable structure, Graduate Studies in Mathematics, 98, American Mathematical Society, Providence, RI, 2008 | DOI | MR | Zbl
[16] Nijhoff F.W., Ragnisco O., Kuznetsov V.B., “Integrable time-discretization of the Ruijsenaars–Schneider model”, Comm. Math. Phys., 176 (1996), 681–700 ; arXiv: hep-th/9412170 | DOI | MR | Zbl
[17] Nijhoff F.W., Pang G.D., “A time-discretized version of the Calogero–Moser model”, Phys. Lett. A, 191 (1994), 101–107 ; arXiv: ; Nijhoff F.W., Pang G.D., “Discrete-time Calogero–Moser model and lattice KP equations”, Symmetries and Integrability of Difference Equations (Estérel, PQ, 1994), CRM Proc. Lecture Notes, 9, eds. D. Levi, L. Vinet and P. Winternitz, Amer. Math. Soc., Providence, RI, 1996, 253–264 ; arXiv: hep-th/9403052hep-th/9409071 | DOI | MR | Zbl | MR
[18] Suris Yu.B., “Time discretization of F. Calogero's “goldfish” system”, J. Nonlinear Math. Phys., 12:1 (2005), 633–647 | DOI | MR
[19] Olshanetsky M.A., Perelomov A.M., “Explicit solution of the Calogero model in the classical case and geodesic flows on symmetric spaces of zero curvature”, Lett. Nuovo Cimento, 16 (1976), 333–339 | DOI | MR