@article{SIGMA_2011_7_a80,
author = {Daryoush Talati and Refik Turhan},
title = {On a {Recently} {Introduced} {Fifth-Order} {Bi-Hamiltonian} {Equation} and {Trivially} {Related} {Hamiltonian} {Operators}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a80/}
}
TY - JOUR AU - Daryoush Talati AU - Refik Turhan TI - On a Recently Introduced Fifth-Order Bi-Hamiltonian Equation and Trivially Related Hamiltonian Operators JO - Symmetry, integrability and geometry: methods and applications PY - 2011 VL - 7 UR - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a80/ LA - en ID - SIGMA_2011_7_a80 ER -
%0 Journal Article %A Daryoush Talati %A Refik Turhan %T On a Recently Introduced Fifth-Order Bi-Hamiltonian Equation and Trivially Related Hamiltonian Operators %J Symmetry, integrability and geometry: methods and applications %D 2011 %V 7 %U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a80/ %G en %F SIGMA_2011_7_a80
Daryoush Talati; Refik Turhan. On a Recently Introduced Fifth-Order Bi-Hamiltonian Equation and Trivially Related Hamiltonian Operators. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a80/
[1] Gel'fand I.M., Dorfman I.Ya., “Hamiltonian operators and algebraic structures related to them”, Funct. Anal. Appl., 13 (1979), 248–262 | DOI | MR
[2] Astashov A.M., Vinogradov A.M., “On the structure of Hamiltonian operators in field theory”, J. Geom. Phys., 3 (1986), 263–287 | DOI | MR | Zbl
[3] Mokhov O.I., “Hamiltonian differential operators and contact geometry”, Funct. Anal. Appl., 21 (1987), 217–223 | DOI | MR | Zbl
[4] Olver P.J., “Darboux' theorem for Hamiltonian operators”, J. Differential Equations, 71 (1988), 10–33 | DOI | MR | Zbl
[5] Cooke D.B., “Classification results and the Darboux theorem for low-order Hamiltonian operators”, J. Math. Phys., 32 (1991), 109–119 | DOI | MR | Zbl
[6] de Sole A., Kac V.G., Wakimoto M., “On classification of Poisson vertex algebras”, Transform. Groups, 14 (2010), 883–907 ; arXiv: 1004.5387 | DOI | MR
[7] Mikhailov A.V., Shabat A.V., Sokolov V.V., “The symmetry approach to classification of integrable equations”, What is Integrability, Springer Ser. Nonlinear Dynam., ed. V.E. Zakharov, Springer, Berlin, 1991, 115–184 | MR | Zbl
[8] Olver P.J., Nutku Y., “Hamiltonian structures for systems of hyperbolic conservation laws”, J. Math. Phys., 29 (1988), 1610–1619 | DOI | MR | Zbl
[9] Fuchssteiner B., Fokas A.S., “Symplectic structures, their Bäcklund transformations and hereditary symmetries”, Phys. D, 4 (1981), 47–66 | DOI | MR | Zbl
[10] Vodová J., “The Darboux coordinates for a new family of Hamiltonian operators and linearization of associated evolution equations”, Nonlinearity, 24 (2011), 2569–2574 ; arXiv: 1012.2365 | DOI | Zbl
[11] Nutku Y., “On a new class of completely integrable nonlinear wave equations. II. Multi-Hamiltonian structure”, J. Math. Phys., 28 (1987), 2579–2585 | DOI | MR | Zbl
[12] Ferapontov E.V., Pavlov M.V., “Reciprocal transformations of Hamiltonian operator of hydrodynamic type: nonlocal Hamiltonian formalism for linearly degenerate systems”, J. Math. Phys., 44 (2003), 1150–1172 ; arXiv: nlin.SI/0212026 | DOI | MR | Zbl
[13] Turhan R., “Infinite-Hamiltonian structures of the Riemann equation”, Turk. J. Phys., 30 (2006), 445–449; arXiv: nlin.SI/0512071
[14] Sergyeyev A., “Weakly nonlocal Hamiltonian structures: Lie derivative and compatibility”, SIGMA, 3 (2007), 062, 14 pp. ; arXiv: math-ph/0612048 | DOI | MR | Zbl
[15] Gürses M., Karasu A., “Variable coefficient third order Korteweg–de Vries type of equations”, J. Math. Phys., 36 (1995), 3485–3491 ; arXiv: solv-int/9411004 | DOI | MR
[16] Sakovich S.Yu., “Fujimoto–Watanabe equations and differential substitutions”, J. Phys. A: Math. Gen., 24 (1991), L519–L521 | DOI | MR | Zbl