@article{SIGMA_2011_7_a79,
author = {Jeroen Schillewaert and Koen Thas},
title = {The {2-Transitive} {Transplantable} {Isospectral} {Drums}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a79/}
}
Jeroen Schillewaert; Koen Thas. The 2-Transitive Transplantable Isospectral Drums. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a79/
[1] Brooks R., Tse R., “Isospectral surfaces of small genus”, Nagoya Math. J., 107 (1987), 13–24 | MR | Zbl
[2] Buser P., “Isospectral Riemann surfaces”, Ann. Inst. Fourier (Grenoble), 36 (1986), 167–192 | DOI | MR | Zbl
[3] Buser P., Conway J., Doyle P., Semmler K.-D., “Some planar isospectral domains”, Int. Math. Res. Not., 1994:9 (1994), 391–400 ; arXiv: 1005.1839 | DOI | MR | Zbl
[4] Cameron P.J., “Finite permutation groups and finite simple groups”, Bull. London Math. Soc., 13 (1981), 1–22 | DOI | MR | Zbl
[5] Conway J.H., Curtis R.T., Norton S.P., Parker R.A., Wilson R.A., Atlas of finite groups. Maximal subgroups and ordinary characters for simple groups, with computational assistance from J.G. Thackray, Oxford University Press, Eynsham, 1985 | MR | Zbl
[6] Dixon J.D., Mortimer B., Permutation groups, Graduate Texts in Mathematics, 163, Springer-Verlag, New York, 1996 | MR | Zbl
[7] Epkenhans M., Gerstengarbe O., “On the Galois number and the minimal degree of doubly transitive groups”, Comm. Algebra, 28 (2000), 4889–4900 | DOI | MR | Zbl
[8] Giraud O., “Finite geometries and diffractive orbits in isospectral billiards”, J. Phys. A: Math. Gen., 38 (2005), L477–L483 ; arXiv: nlin.CD/0503069 | DOI | MR
[9] Giraud O., Thas K., “Hearing shapes of drums – mathematical and physical aspects of isospectrality”, Rev. Modern Phys., 82 (2010), 2213–2255 ; arXiv: 1101.1239 | DOI | MR
[10] Gordon C., Webb D., Wolpert S., “Isospectral plane domains and surfaces via Riemannian orbifolds”, Invent. Math., 110 (1992), 1–22 | DOI | MR | Zbl
[11] Kac M., “Can one hear the shape of the drum?”, Amer. Math. Monthly, 73:4, part II (1966), 1–23 | DOI | MR | Zbl
[12] Milnor J., “Eigenvalues of the Laplace operators on certain manifolds”, Proc. Nat. Acad. Sci. USA, 51 (1964), 542 | DOI | MR | Zbl
[13] Okada Y., Shudo A., “Equivalence between isospectrality and isolength spectrality for a certain class of planar billiard domains”, J. Phys. A: Math. Gen., 34 (2001), 5911–5922 ; arXiv: nlin.CD/0105068 | DOI | MR | Zbl
[14] Segre B., Lectures on modern geometry, with an appendix by Lucio Lombardo-Radice, Consiglio Nazionale delle Ricerche Monografie Matematiche, 7, Edizioni Cremonese, Rome, 1961 | MR | Zbl
[15] Sunada T., “Riemannian coverings and isospectral manifolds”, Ann. of Math. (2), 121 (1980), 169–186 | DOI | MR
[16] Thas K., “Kac's question, planar isospectral pairs and involutions in projective space”, J. Phys. A: Math. Gen., 39 (2006), L385–L388 | DOI | MR | Zbl
[17] Thas K., “Kac's question, planar isospectral pairs and involutions in projective space. II. Classification of generalized projective isospectral data”, J. Phys. A: Math. Gen., 39 (2006), 13237–13242 | DOI | MR | Zbl
[18] Thas K., “$\mathrm{PSL}_n(q)$ as operator group of isospectral drums”, J. Phys. A: Math. Gen., 39 (2006), L673–L675 | DOI | MR | Zbl
[19] Thas K., Classification of transplantable isospectral drums in $\mathbb R^2$, in preparation