Harmonic Analysis on Quantum Complex Hyperbolic Spaces
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we obtain some results of harmonic analysis on quantum complex hyperbolic spaces. We introduce a quantum analog for the Laplace–Beltrami operator and its radial part. The latter appear to be second order $q$-difference operator, whose eigenfunctions are related to the Al-Salam–Chihara polynomials. We prove a Plancherel type theorem for it.
Keywords: quantum groups, harmonic analysis on quantum symmetric spaces; $q$-difference operators; Al-Salam–Chihara polynomials; Plancherel formula.
@article{SIGMA_2011_7_a77,
     author = {Olga Bershtein and Yevgen Kolisnyk},
     title = {Harmonic {Analysis} on {Quantum} {Complex} {Hyperbolic} {Spaces}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a77/}
}
TY  - JOUR
AU  - Olga Bershtein
AU  - Yevgen Kolisnyk
TI  - Harmonic Analysis on Quantum Complex Hyperbolic Spaces
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a77/
LA  - en
ID  - SIGMA_2011_7_a77
ER  - 
%0 Journal Article
%A Olga Bershtein
%A Yevgen Kolisnyk
%T Harmonic Analysis on Quantum Complex Hyperbolic Spaces
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a77/
%G en
%F SIGMA_2011_7_a77
Olga Bershtein; Yevgen Kolisnyk. Harmonic Analysis on Quantum Complex Hyperbolic Spaces. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a77/

[1] Akhiezer N.I., Glazman I.M., Theory of linear operators in Hilbert space, Dover Publications, New York, 1993 | MR | Zbl

[2] Bershtein O., Kolisnyk Ye., “Plancherel measure for the quantum matrix ball. I”, J. Math. Phys. Anal. Geom., 5 (2009), 315–346 ; arXiv: 0903.4068 | MR

[3] Bershtein O., Sinelshchikov S., Function theory on a $q$-analog of complex hyperbolic space, arXiv: 1009.6063

[4] Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1994 | MR | Zbl

[5] Faraut J., “Distributions sphériques sur les espaces hyperboliques”, J. Math. Pures Appl., 58 (1979), 369–444 | MR | Zbl

[6] Gaspar G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 35, Cambridge University Press, Cambridge, 1990 | MR

[7] Jantzen J.C., Lectures on quantum groups, Graduate Studies in Mathematics, 6, American Mathematical Society, Providence, RI, 1996 | MR | Zbl

[8] Klimyk A., Schmüdgen K., Quantum groups and their representations, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997 | MR | Zbl

[9] Koekoek R., Swarttouw R.F., The Askey-scheme of hypergeometric orthogonal polynomials and its $q$-analogue, Report 98-17, Faculty of Technical Mathematics and Informatics, Delft University of Technology, 1998 http://aw.twi.tudelft.nl/~koekoek/askey/

[10] Koelink E., Stokman J.V., “Fourier transforms on the quantum $SU(1,1)$ group”, with an appendix by M. Rahman, Publ. Res. Inst. Math. Sci., 37 (2001), 621–715 ; arXiv: math.QA/9911163 | DOI | MR | Zbl

[11] Math. USSR Sb., 28:2 (1976), 119–139 | DOI | MR | MR | Zbl

[12] Encycl. Math. Sci., 59, Springer, Berlin, 1995, 1–135 | MR | MR

[13] Onishchik A.L., Vinberg E.B., Lie groups and algebraic groups, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1990 | MR | Zbl

[14] Leningrad Math. J., 1 (1990), 193–225 | MR | Zbl

[15] Shklyarov D., Sinel'shchikov S., Vaksman L., “Fock representations and quantum matrices”, Internat. J. Math., 15 (2004), 855–894 ; arXiv: math.QA/0410605 | DOI | MR | Zbl

[16] Shklyarov D., Sinel'shchikov S., Vaksman L., On function theory on quantum disc: $q$-differential equations and Fourier transform, arXiv: math.QA/9809002 | MR

[17] Shklyarov D., Sinel'shchikov S., Stolin A., Vaksman L., “On a $q$-analogue of the Penrose transform”, Ukr. Phys. J., 47 (2003), 288–292 | MR

[18] Ueno K., “Spectral analysis for the Casimir operator on the quantum group $\mathrm{SU}(1,1)$”, Proc. Japan Acad. Ser. A Math. Sci., 66:2 (1990), 42–44 | DOI | MR | Zbl

[19] Vaksman L.L., Quantum bounded symmetric domains, translated by O. Bershtein and S. Sinel'shchikov, Translations of Mathematical Monographs, 238, American Mathematical Society, Providence, RI, 2010 | MR | Zbl

[20] Funct. Anal. Appl., 25:1 (1991), 48–49 | DOI | MR | Zbl

[21] van Dijk G., Sharshov Yu.A., “The Plancherel formula for line bundles on complex hyperbolic spaces”, J. Math. Pures Appl., 79 (2000), 451–473 | DOI | MR | Zbl