Quantum Analogs of Tensor Product Representations of $\mathfrak{su}(1,1)$
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study representations of $\mathcal U_q(\mathfrak{su}(1,1))$ that can be considered as quantum analogs of tensor products of irreducible $*$-representations of the Lie algebra $\mathfrak{su}(1,1)$. We determine the decomposition of these representations into irreducible $*$-representations of $\mathcal U_q(\mathfrak{su}(1,1))$ by diagonalizing the action of the Casimir operator on suitable subspaces of the representation spaces. This leads to an interpretation of the big $q$-Jacobi polynomials and big $q$-Jacobi functions as quantum analogs of Clebsch–Gordan coefficients.
Keywords: tensor product representations; Clebsch–Gordan coefficients; big $q$-Jacobi functions.
@article{SIGMA_2011_7_a76,
     author = {Wolter Groenevelt},
     title = {Quantum {Analogs} of {Tensor} {Product} {Representations} of $\mathfrak{su}(1,1)$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a76/}
}
TY  - JOUR
AU  - Wolter Groenevelt
TI  - Quantum Analogs of Tensor Product Representations of $\mathfrak{su}(1,1)$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a76/
LA  - en
ID  - SIGMA_2011_7_a76
ER  - 
%0 Journal Article
%A Wolter Groenevelt
%T Quantum Analogs of Tensor Product Representations of $\mathfrak{su}(1,1)$
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a76/
%G en
%F SIGMA_2011_7_a76
Wolter Groenevelt. Quantum Analogs of Tensor Product Representations of $\mathfrak{su}(1,1)$. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a76/

[1] Andrews G.E., Askey R., “Classical orthogonal polynomials”, Orthogonal Polynomials and Applications (Bar-le-Duc, 1984), Lecture Notes in Math., 1171, Springer, Berlin, 1985, 36–62 | DOI | MR

[2] Burban I.M., Klimyk A.U., “Representations of the quantum algebra $U_q(su_{1,1})$”, J. Phys. A: Math. Gen., 26 (1993), 2139–2151 | DOI | MR | Zbl

[3] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96, 2nd ed., Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl

[4] Groenevelt W., “Bilinear summation formulas from quantum algebra representations”, Ramanujan J., 8 (2004), 383–416 ; arXiv: math.QA/0201272 | DOI | MR | Zbl

[5] Groenevelt W., “Wilson function transforms related to Racah coefficients”, Acta Appl. Math., 91 (2006), 133–191 ; arXiv: math.CA/0501511 | DOI | MR | Zbl

[6] Groenevelt W., “The vector-valued big $q$-Jacobi transform”, Constr. Approx., 29 (2009), 85–127 ; arXiv: math.CA/0612643 | DOI | MR | Zbl

[7] Groenevelt W., Koelink E., “Meixner functions and polynomials related to Lie algebra representations”, J. Phys. A: Math. Gen., 35 (2002), 65–85 ; arXiv: math.CA/0109201 | DOI | MR | Zbl

[8] Groenevelt W., Koelink E., Kustermans J., “The dual quantum group for the quantum group analog of the normalizer of $\mathrm{SU}(1,1)$ in $\mathrm{SL}(2,\mathbb C)$”, Int. Math. Res. Not., 2010:7 (2010), 1167–1314 ; arXiv: 0905.2830 | DOI | MR | Zbl

[9] Gupta D.P., Ismail M.E.H., Masson D.R., “Contiguous relations, basic hypergeometric functions, and orthogonal polynomials. III. Associated continuous dual $q$-Hahn polynomials”, J. Comput. Appl. Math., 68 (1996), 115–149 ; arXiv: math.CA/9411226 | DOI | MR | Zbl

[10] Kalnins E.G., Manocha H.L., Miller W., “Models of $q$-algebra representations: tensor products of special unitary and oscillator algebras”, J. Math. Phys., 33 (1992), 2365–2383 | DOI | MR | Zbl

[11] Kalnins E.G., Miller W., “A note on tensor products of $q$-algebra representations and orthogonal polynomials”, J. Comput. Appl. Math., 8 (1996), 197–207 | DOI | MR

[12] Koekoek R., Lesky P.A., Swarttouw R.F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl

[13] Koelink E., Stokman J.V., “The big $q$-Jacobi function transform”, Constr. Approx., 19 (2003), 191–235 ; arXiv: math.CA/9904111 | DOI | MR | Zbl

[14] Korogodsky L.I., Vaksman L.L., “Quantum $G$-spaces and Heisenberg algebra”, Quantum Groups (Leningrad, 1990), Lecture Notes in Math., 1510, Springer, Berlin, 1992, 56–66 | DOI | MR

[15] Masuda T., Mimachi K., Nakagami Y., Noumi M., Saburi Y., Ueno K., “Unitary representations of the quantum group $\mathrm{SU}_q(1,1)$. II. Matrix elements of unitary representations and the basic hypergeometric functions”, Lett. Math. Phys., 19 (1990), 195–204 | DOI | MR | Zbl

[16] Neretin Yu.A., “Some continuous analogues of the expansion in Jacobi polynomials, and vector-valued orthogonal bases”, Funct. Anal. Appl., 39 (2005), 106–119 ; arXiv: math.CA/0309445 | DOI | MR | Zbl

[17] Ørsted B., Zhang G., “$L^2$-versions of the Howe correspondence. I”, Math. Scand., 80 (1997), 125–160 | MR

[18] Pukánszky L., “On the Kronecker products of irreducible representations of the $2\times 2$ real unimodular group. I”, Trans. Amer. Math. Soc., 100 (1961), 116–152 | DOI | MR | Zbl

[19] Repka J., “Tensor products of unitary representations of $\mathrm{SL}_{2}(\mathbf R)$”, Amer. J. Math., 100 (1978), 747–774 | DOI | MR | Zbl

[20] Schmüdgen K., Unbounded operator algebras and representation theory, Operator Theory: Advances and Applications, 37, Birkhäuser Verlag, Basel, 1990 | MR