Third Order ODEs Systems and Its Characteristic Connections
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We compute the characteristic Cartan connection associated with a system of third order ODEs. Our connection is different from Tanaka normal one, but still is uniquely associated with the system of third order ODEs. This allows us to find all fundamental invariants of a system of third order ODEs and, in particular, determine when a system of third order ODEs is trivializable. As application differential invariants of equations on circles in $\mathbb R^n$ are computed.
Keywords: geometry of ordinary differential equations; normal Cartan connections.
@article{SIGMA_2011_7_a75,
     author = {Alexandr Medvedev},
     title = {Third {Order} {ODEs} {Systems} and {Its} {Characteristic} {Connections}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a75/}
}
TY  - JOUR
AU  - Alexandr Medvedev
TI  - Third Order ODEs Systems and Its Characteristic Connections
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a75/
LA  - en
ID  - SIGMA_2011_7_a75
ER  - 
%0 Journal Article
%A Alexandr Medvedev
%T Third Order ODEs Systems and Its Characteristic Connections
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a75/
%G en
%F SIGMA_2011_7_a75
Alexandr Medvedev. Third Order ODEs Systems and Its Characteristic Connections. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a75/

[1] Chern S.-S., “The geometry of the differential equation $y'''=F(x,y,y',y'')$”, Sci. Rep. Nat. Tsing Hua Univ. (A), 4 (1940), 97–111 | MR | Zbl

[2] Doubrov B., “Contact trivialization of ordinary differential equations”, Differential Geometry and Its Applications (Opava, 2001), Math. Publ., 3, Silesian Univ. Opava, Opava, 2001, 73–84 | MR | Zbl

[3] Doubrov B., Komrakov B., Morimoto T., “Equivalence of holonomic differential equations”, Lobachevskii J. Math., 3 (1999), 39–71 | MR | Zbl

[4] Fels M., “The equivalence problem for systems of second-order ordinary differential equations”, Proc. London Math. Soc., 71 (1995), 221–240 | DOI | MR | Zbl

[5] Lie S., Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen, Teubner, Leipzig, 1891 | Zbl

[6] Medvedev A., “Geometry of third order ODE systems”, Arch. Math. (Brno), 46 (2010), 351–361 | MR

[7] Morimoto T., “Geometric structures on filtered manifolds”, Hokkaido Math. J., 22 (1993), 263–347 | MR | Zbl

[8] Sato H., Yoshikawa A.Y., “Third order ordinary differential equations and Legendre connections”, J. Math. Soc. Japan, 50 (1998), 993–1013 | DOI | MR | Zbl

[9] Tanaka N., “On differential systems, graded Lie algebras and pseudo-groups”, J. Math. Kyoto Univ., 10 (1970), 1–82 | MR | Zbl

[10] Tanaka N., “On the equivalence problems associated with simple graded Lie algebras”, Hokkaido Math. J., 8 (1979), 23–84 | MR | Zbl

[11] Tresse M.A., Détermination des invariants ponctuels de l'équation différentielle ordinaire du second ordre $y''=\omega(x,y,y')$, Hirzel, Leipzig, 1896

[12] Yano K., The theory of Lie derivatives and its applications, North Holland Publishing Co., Amsterdam, 1957 | MR | Zbl