@article{SIGMA_2011_7_a75,
author = {Alexandr Medvedev},
title = {Third {Order} {ODEs} {Systems} and {Its} {Characteristic} {Connections}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a75/}
}
Alexandr Medvedev. Third Order ODEs Systems and Its Characteristic Connections. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a75/
[1] Chern S.-S., “The geometry of the differential equation $y'''=F(x,y,y',y'')$”, Sci. Rep. Nat. Tsing Hua Univ. (A), 4 (1940), 97–111 | MR | Zbl
[2] Doubrov B., “Contact trivialization of ordinary differential equations”, Differential Geometry and Its Applications (Opava, 2001), Math. Publ., 3, Silesian Univ. Opava, Opava, 2001, 73–84 | MR | Zbl
[3] Doubrov B., Komrakov B., Morimoto T., “Equivalence of holonomic differential equations”, Lobachevskii J. Math., 3 (1999), 39–71 | MR | Zbl
[4] Fels M., “The equivalence problem for systems of second-order ordinary differential equations”, Proc. London Math. Soc., 71 (1995), 221–240 | DOI | MR | Zbl
[5] Lie S., Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen, Teubner, Leipzig, 1891 | Zbl
[6] Medvedev A., “Geometry of third order ODE systems”, Arch. Math. (Brno), 46 (2010), 351–361 | MR
[7] Morimoto T., “Geometric structures on filtered manifolds”, Hokkaido Math. J., 22 (1993), 263–347 | MR | Zbl
[8] Sato H., Yoshikawa A.Y., “Third order ordinary differential equations and Legendre connections”, J. Math. Soc. Japan, 50 (1998), 993–1013 | DOI | MR | Zbl
[9] Tanaka N., “On differential systems, graded Lie algebras and pseudo-groups”, J. Math. Kyoto Univ., 10 (1970), 1–82 | MR | Zbl
[10] Tanaka N., “On the equivalence problems associated with simple graded Lie algebras”, Hokkaido Math. J., 8 (1979), 23–84 | MR | Zbl
[11] Tresse M.A., Détermination des invariants ponctuels de l'équation différentielle ordinaire du second ordre $y''=\omega(x,y,y')$, Hirzel, Leipzig, 1896
[12] Yano K., The theory of Lie derivatives and its applications, North Holland Publishing Co., Amsterdam, 1957 | MR | Zbl