A Class of Special Solutions for the Ultradiscrete Painlevé II Equation
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A class of special solutions are constructed in an intuitive way for the ultradiscrete analog of $q$-Painlevé II ($q$-PII) equation. The solutions are classified into four groups depending on the function-type and the system parameter.
Keywords: ultradiscretization; Painlevé equation; Airy equation; $q$-difference equation.
@article{SIGMA_2011_7_a73,
     author = {Shin Isojima and Junkichi Satsuma},
     title = {A {Class} of {Special} {Solutions} for the {Ultradiscrete} {Painlev\'e~II} {Equation}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a73/}
}
TY  - JOUR
AU  - Shin Isojima
AU  - Junkichi Satsuma
TI  - A Class of Special Solutions for the Ultradiscrete Painlevé II Equation
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a73/
LA  - en
ID  - SIGMA_2011_7_a73
ER  - 
%0 Journal Article
%A Shin Isojima
%A Junkichi Satsuma
%T A Class of Special Solutions for the Ultradiscrete Painlevé II Equation
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a73/
%G en
%F SIGMA_2011_7_a73
Shin Isojima; Junkichi Satsuma. A Class of Special Solutions for the Ultradiscrete Painlevé II Equation. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a73/

[1] Tokihiro T., Takahashi D., Matsukidaira J., Satsuma J., “From soliton equations to integrable cellular automata through a limiting procedure”, Phys. Rev. Lett., 76 (1996), 3247–3250 | DOI

[2] Grammticos B., Ohta Y., Ramani A., Takahashi D., Tamizhmani K. M., “Cellular automata and ultra-discrete Painlevé equations”, Phys. Lett. A, 226 (1997), 53–58, arXiv: solv-int/9603003 | DOI | MR

[3] Takahashi D., Tokihiro T., Grammticos B., Ohta Y., Ramani A., “Constructing solutions to the ultradiscrete Painlevé equations”, J. Phys. A: Math. Gen., 30 (1997), 7953–7966 | DOI | MR | Zbl

[4] Ramani A., Takahashi D., Grammticos B., Ohta Y., “The ultimate discretisation of the Painlevé equations”, Phys. D, 114 (1998), 185–196 | DOI | MR | Zbl

[5] Isojima S., Grammaticos B., Ramani A., Satsuma J., “Ultradiscretization without positivity”, J. Phys. A: Math. Gen., 39 (2006), 3663–3672 | DOI | MR | Zbl

[6] Kasman A., Lafortune S., “When is negativity not a problem for the ultradiscrete limit?”, J. Math. Phys., 47 (2006), 103510, 16 pp., arXiv: nlin.SI/0609034 | DOI | MR | Zbl

[7] Ormerod C. M., “Hypergeometric solutions to an ultradiscrete Painlevé equation”, J. Nonlinear Math. Phys., 17 (2010), 87–102, arXiv: nlin.SI/0610048 | DOI | MR | Zbl

[8] Mimura N., Isojima S., Murata M., Satsuma J., “Singularity confinement test for ultradiscrete equations with parity variables”, J. Phys. A: Math. Theor., 42 (2009), 315206, 7 pp. | DOI | MR | Zbl

[9] Isojima S., Konno K., Mimura N., Murata M., Satsuma J., “Ultradiscrete Painlevé II equation and a special function solution”, J. Phys. A: Math. Theor., 44 (2011), 175201, 10 pp. | DOI | MR | Zbl

[10] Hamamoto T., Kajiwara K., Witte N. S., “Hypergeometric solutions to the $q$-Painlevé equation of type $(A_1+A_1^\prime)^{(1)}$”, Int. Math. Res. Not., 2006 (2006), Art. ID 84619, 26 pp. nlin.SI/0607065 | DOI | MR