Singularities of Type-Q ABS Equations
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The type-Q equations lie on the top level of the hierarchy introduced by Adler, Bobenko and Suris (ABS) in their classification of discrete counterparts of KdV-type integrable partial differential equations. We ask what singularities are possible in the solutions of these equations, and examine the relationship between the singularities and the principal integrability feature of multidimensional consistency. These questions are considered in the global setting and therefore extend previous considerations of singularities which have been local. What emerges are some simple geometric criteria that determine the allowed singularities, and the interesting discovery that generically the presence of singularities leads to a breakdown in the global consistency of such systems despite their local consistency property. This failure to be globally consistent is quantified by introducing a natural notion of monodromy for isolated singularities.
Keywords: singularities; integrable systems; difference equations; multidimensional consistency.
@article{SIGMA_2011_7_a72,
     author = {James Atkinson},
     title = {Singularities of {Type-Q} {ABS} {Equations}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a72/}
}
TY  - JOUR
AU  - James Atkinson
TI  - Singularities of Type-Q ABS Equations
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a72/
LA  - en
ID  - SIGMA_2011_7_a72
ER  - 
%0 Journal Article
%A James Atkinson
%T Singularities of Type-Q ABS Equations
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a72/
%G en
%F SIGMA_2011_7_a72
James Atkinson. Singularities of Type-Q ABS Equations. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a72/

[1] Adler V. E., Bobenko A. I., Suris Yu. B., “Classification of integrable equations on quad-graphs. The consistency approach”, Comm. Math. Phys., 233 (2003), 513–543, arXiv: nlin.SI/0202024 | DOI | MR | Zbl

[2] Nijhoff F. W., Walker A. J., “The discrete and continuous Painlevé VI hierarchy and the Garnier systems”, Glasg. Math. J., 43A (2001), 109–123, arXiv: nlin.SI/0001054 | DOI | MR | Zbl

[3] Bobenko A. I., Suris Yu. B., “Integrable systems on quad-graphs”, Int. Math. Res. Not., 2002:11 (2002), 573–611, arXiv: nlin.SI/0110004 | DOI | MR | Zbl

[4] Atkinson J., Hietarinta J., Nijhoff F. W., “Seed and soliton solutions for Adler's lattice equation”, J. Phys. A: Math. Theor., 40 (2007), F1–F8, arXiv: nlin.SI/0609044 | DOI | Zbl

[5] Adler V. E., Bobenko A. I., Suris Yu. B., “Discrete nonlinear hyperbolic equations: classification of integrable cases”, Funct. Anal. Appl., 43 (2009), 3–17, arXiv: 0705.1663 | DOI | MR

[6] Adler V. E., “Bäcklund transformation for the Krichever–Novikov equation”, Int. Math. Res. Not., 1998:1 (1998), 1–4, arXiv: solv-int/9707015 | DOI | MR

[7] Adler V. E., Veselov A. P., “Cauchy problem for integrable discrete equations on quad-graphs”, Acta Appl. Math., 84 (2004), 237–262, arXiv: math-ph/0211054 | DOI | MR | Zbl

[8] Soviet Math. Dokl., 36:1 (1988), 11–15 | MR | MR | Zbl

[9] Boll R., Classification of 3D consistent quad-equations, arXiv: 1009.4007

[10] Adler V. E., Suris Yu. B., “${\rm Q}_4$: integrable master equation related to an elliptic curve”, Int. Math. Res. Not., 2004:47 (2004), 2523–2553, arXiv: nlin.SI/0309030 | DOI | MR | Zbl