@article{SIGMA_2011_7_a70,
author = {Alexander V. Turbiner},
title = {From {Quantum~}$A_N$ {(Calogero)} to~$H_4$ {(Rational)} {Model}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a70/}
}
Alexander V. Turbiner. From Quantum $A_N$ (Calogero) to $H_4$ (Rational) Model. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a70/
[1] Evans N. W., “Group theory of the Smorodinsky–Winternitz system”, J. Math. Phys., 32 (1991), 3369–3375 | DOI | MR | Zbl
[2] Turbiner A. V., “Quasi-exactly-solvable problems and the sl(2) group”, Comm. Math. Phys., 118 (1988), 467–474 | DOI | MR | Zbl
[3] Calogero F., “Solution of a three-body problem in one dimension”, J. Math. Phys., 10 (1969), 2191–2196 ; Calogero F., “Solution of the one-dimensional $N$-body problem with quadratic and/or inversely quadratic pair potentials”, J. Math. Phys., 12 (1971), 419–436 | DOI | MR | DOI | MR
[4] Rühl W., Turbiner A., “Exact solvability of the Calogero and Sutherland models”, Modern Phys. Lett. A, 10 (1995), 2213–2221, arXiv: hep-th/9506105 | DOI | MR
[5] Minzoni A., Rosenbaum M., Turbiner A., “Quasi-exactly-solvable many-body problems”, Modern Phys. Lett. A, 11 (1996), 1977–1984, arXiv: hep-th/9606092 | DOI | MR | Zbl
[6] Olshanetsky M. A., Perelomov A. M., “Quantum integrable systems related to Lie algebras”, Phys. Rep., 94 (1983), 313–404 | DOI | MR
[7] Oshima T., “Completely integrable systems associated with classical root systems”, SIGMA, 3 (2007), 061, 50 pp., arXiv: math-ph/0502028 | DOI | MR | Zbl
[8] Brink L., Turbiner A., Wyllard N., “Hidden algebras of the (super) Calogero and Sutherland models”, J. Math. Phys., 39 (1998), 1285–1315, arXiv: hep-th/9705219 | DOI | MR | Zbl
[9] Wolfes J., “On the three-body linear problem with three-body interaction”, J. Math. Phys., 15 (1974), 1420–1424 | DOI | MR
[10] Lie S., “Gruppenregister”, Gesammelte Abhandlungen, v. 5, B. G. Teubner, Leipzig, 1924, 767–773
[11] González-López A., Kamran N., Olver P. J., “Quasi-exactly-solvable Lie algebras of the first order differential operators in two complex variables”, J. Phys. A: Math. Gen., 24 (1991), 3995–4008 ; González-López A., Kamran N., Olver P. J., “Lie algebras of differential operators in two complex variables”, Amer. J. Math., 114 (1992), 1163–1185 | DOI | MR | Zbl | DOI | MR | Zbl
[12] Boreskov K. G.,Turbiner A. V., Lopez Vieyra J. C., “Solvability of the Hamiltonians related to exceptional root spaces: rational case”, Comm. Math. Phys., 260 (2005), 17–44, arXiv: hep-th/0407204 | DOI | MR | Zbl
[13] Tremblay F., Turbiner A. V., Winternitz P., “An infinite family of solvable and integrable quantum systems on a plane”, J. Phys. A: Math. Theor., 42 (2009), 242001, 10 pp., arXiv: 0904.0738 | DOI | MR | Zbl
[14] García M. A. G., Turbiner A. V., “The quantum $H_3$ integrable system”, Internat. J. Modern Phys. A, 25 (2010), 5567–5594, arXiv: 1007.0737 | DOI | MR | Zbl
[15] García M. A. G., Turbiner A. V., “The quantum $H_4$ integrable system”, Modern Phys. Lett. A, 26 (2011), 433–447, arXiv: 1011.2127 | DOI | MR | Zbl
[16] García M. A. G., Los Sistemas Integrables $H_3$ y $H_4$, PhD Thesis, UNAM, 2011 (in Spanish)