A Vertex Operator Approach for Form Factors of Belavin's $(\mathbb{Z}/n\mathbb{Z})$-Symmetric Model and
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A vertex operator approach for form factors of Belavin's $(\mathbb{Z}/n\mathbb{Z})$-symmetric model is constructed on the basis of bosonization of vertex operators in the $A^{(1)}_{n-1}$ model and vertex-face transformation. As simple application for $n=2$, we obtain expressions for $2m$-point form factors related to the $\sigma^z$ and $\sigma^x$ operators in the eight-vertex model.
Keywords: vertex operator approach; form factors; Belavin's $(\mathbb{Z}/n\mathbb{Z})$-symmetric model; integral formulae.
@article{SIGMA_2011_7_a7,
     author = {Yas-Hiro Quano},
     title = {A~Vertex {Operator} {Approach} for {Form} {Factors} of {Belavin's} $(\mathbb{Z}/n\mathbb{Z})${-Symmetric} {Model} and},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a7/}
}
TY  - JOUR
AU  - Yas-Hiro Quano
TI  - A Vertex Operator Approach for Form Factors of Belavin's $(\mathbb{Z}/n\mathbb{Z})$-Symmetric Model and
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a7/
LA  - en
ID  - SIGMA_2011_7_a7
ER  - 
%0 Journal Article
%A Yas-Hiro Quano
%T A Vertex Operator Approach for Form Factors of Belavin's $(\mathbb{Z}/n\mathbb{Z})$-Symmetric Model and
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a7/
%G en
%F SIGMA_2011_7_a7
Yas-Hiro Quano. A Vertex Operator Approach for Form Factors of Belavin's $(\mathbb{Z}/n\mathbb{Z})$-Symmetric Model and. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a7/

[1] Quano Y.-H., “A vertex operator approach for correlation functions of Belavin's $(\mathbb{Z}/n\mathbb{Z})$-symmetric model”, J. Phys. A: Math. Theor., 42 (2009), 165211, 20 pp., arXiv: 0810.4220 | DOI | MR | Zbl

[2] Quano Y.-H., “A vertex operator approach for form factors of Belavin's $(\mathbb{Z}/n\mathbb{Z})$-symmetric model”, J. Phys. A: Math. Theor., 43 (2010), 085202, 23 pp., arXiv: 0912.1149 | DOI | MR | Zbl

[3] Belavin A. A., “Dynamical symmetry of integrable quantum systems”, Nuclear Phys. B, 180 (1981), 189–200 | DOI | MR | Zbl

[4] Richey M. P., Tracy C. A., “$\mathbb{Z}_n$ Baxter model: symmetries and the Belavin parametrization”, J. Statist. Phys., 42 (1986), 311–348 | DOI | MR

[5] Jimbo M., Miwa T., Algebraic analysis of solvable lattice models, CBMS Regional Conferences Series in Mathematics, 85, American Mathematical Society, Providence, RI, 1995 | MR | Zbl

[6] Baxter R. J., Exactly solved models in statistical mechanics, Academic Press, Inc., London, 1982 | MR | Zbl

[7] Lashkevich M., Pugai L., “Free field construction for correlation functions of the eight vertex model”, Nuclear Phys. B, 516 (1998), 623–651, arXiv: hep-th/9710099 | DOI | MR | Zbl

[8] Lashkevich M., “Free field construction for the eight-vertex model: representation for form factors”, Nuclear Phys. B, 621 (2002), 587–621, arXiv: hep-th/0103144 | DOI | MR | Zbl

[9] Lukyanov S., Pugai Ya., “Multi-point local height probabilities in the integrable RSOS model”, Nuclear Phys. B, 473 (1996), 631–658, arXiv: hep-th/9602074 | DOI | MR | Zbl

[10] Kojima T., Konno H., Weston R., “The vertex-face correspondence and correlation functions of the fusion eight-vertex model. I. The general formalism”, Nuclear Phys. B, 720 (2005), 348–398, arXiv: math.QA/0504433 | DOI | MR | Zbl

[11] Quano Y.-H., “Spontaneous polarization of the $\mathbb{Z}_n$-Baxter model”, Modern Phys. Lett. A, 8 (1993), 3363–3375, arXiv: hep-th/9308053 | DOI | MR | Zbl

[12] Kojima T., Konno H., “The elliptic algebra $U_{q,p}(\widehat{\mathfrak s\mathfrak l}_N)$ and the Drinfeld realization of the elliptic quantum group ${\mathcal B}_{q,\lambda}(\widehat{\mathfrak s\mathfrak l}_N)$”, Comm. Math. Phys., 239 (2003), 405–447, arXiv: math.QA/0210383 | DOI | MR | Zbl

[13] Kojima T., Konno H., “The elliptic algebra $U_{q,p}(\widehat{\mathfrak s\mathfrak l}_N)$ and the deformation of the $W_N$ algebra”, J. Phys. A: Math. Gen., 37 (2004), 371–383, arXiv: math.QA/0307244 | DOI | MR | Zbl

[14] Jimbo M., Miwa T., Okado M., “Local state probabilities of solvable lattice models: an $A^{(1)}_n$ family”, Nuclear Phys. B, 300 (1988), 74–108 | DOI | MR

[15] Asai Y., Jimbo M., Miwa T., Pugai Ya., “Bosonization of vertex operators for the $A^{(1)}_{n-1}$ face model”, J. Phys. A: Math. Gen., 29 (1996), 6595–6616, arXiv: hep-th/9606095 | DOI | MR | Zbl

[16] Furutsu H., Kojima T., Quano Y.-H., “Type II vertex operators for the $A_{n-1}^{(1)}$-face model”, Internat. J. Modern Phys. A, 15 (2000), 1533–1556, arXiv: solv-int/9908009 | DOI | MR | Zbl

[17] Feigin B. L., Frenkel E. V., “Quantum $\mathcal W$-algebras and elliptic algebras”, Comm. Math. Phys., 178 (1996), 653–678, arXiv: q-alg/9508009 | DOI | MR | Zbl

[18] Awata H., Kubo H., Odake S., Shiraishi J., “Quantum $\mathcal W_N$ algebras and Macdonald polynomials”, Comm. Math. Phys., 179 (1996), 401–416, arXiv: q-alg/9508011 | DOI | MR | Zbl

[19] Fan H., Hou B-Y., Shi K-J., Yang W-L., “Bosonization of vertex operators for the $Z_n$-symmetric Belavin model”, J. Phys. A: Math. Gen., 30 (1997), 5687–5696, arXiv: hep-th/9703126 | DOI | MR | Zbl

[20] Lukyanov S., Terras V., “Long-distance asymptotics of spin-spin correlation functions for the XXZ spin chain”, Nuclear Phys. B, 654 (2003), 323–356, arXiv: hep-th/0206093 | DOI | MR | Zbl

[21] Smirnov F. A., Form factors in completely integrable models of quantum field theory, Advanced Series in Mathematical Physics, 14, World Scientific Publishing Co., Inc., River Edge, NJ, 1992 | MR | Zbl