The Universal Askey–Wilson Algebra
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathbb F$ denote a field, and fix a nonzero $q\in\mathbb F$ such that $q^4\not=1$. We define an associative $\mathbb F$-algebra $\Delta=\Delta_q$ by generators and relations in the following way. The generators are $A$, $B$, $C$. The relations assert that each of \begin{gather*} A+\frac{qBC-q^{-1}CB}{q^2-q^{-2}},\qquad B+\frac{qCA-q^{-1}AC}{q^2-q^{-2}},\qquad C+\frac{qAB-q^{-1}BA}{q^2-q^{-2}} \end{gather*} is central in $\Delta$. We call $\Delta$ the universal Askey–Wilson algebra. We discuss how $\Delta$ is related to the original Askey–Wilson algebra AW(3) introduced by A. Zhedanov. Multiply each of the above central elements by $q+q^{-1}$ to obtain $\alpha$, $\beta$, $\gamma$. We give an alternate presentation for $\Delta$ by generators and relations; the generators are $A$, $B$, $\gamma$. We give a faithful action of the modular group ${\rm {PSL}}_2(\mathbb Z)$ on $\Delta$ as a group of automorphisms; one generator sends $(A,B,C)\mapsto (B,C,A)$ and another generator sends $(A,B,\gamma)\mapsto (B,A,\gamma)$. We show that $\lbrace A^iB^jC^k \alpha^r\beta^s\gamma^t| i,j,k,r,s,t\geq 0\rbrace$ is a basis for the $\mathbb F$-vector space $\Delta$. We show that the center $Z(\Delta)$ contains the element \begin{gather*} \Omega=qABC+q^2A^2+q^{-2}B^2+q^2C^2-qA\alpha-q^{-1}B\beta -q C\gamma. \end{gather*} Under the assumption that $q$ is not a root of unity, we show that $Z(\Delta)$ is generated by $\Omega$, $\alpha$, $\beta$, $\gamma$ and that $Z(\Delta)$ is isomorphic to a polynomial algebra in 4 variables. Using the alternate presentation we relate $\Delta$ to the $q$-Onsager algebra. We describe the 2-sided ideal $\Delta\lbrack \Delta,\Delta\rbrack \Delta$ from several points of view. Our main result here is that $\Delta\lbrack \Delta,\Delta \rbrack \Delta + \mathbb F 1$ is equal to the intersection of $(i)$ the subalgebra of $\Delta$ generated by $A$, $B$; $(ii)$ the subalgebra of $\Delta$ generated by $B$, $C$; $(iii)$ the subalgebra of $\Delta $ generated by $C$, $A$.
Keywords: Askey–Wilson relations; Leonard pair; modular group; $q$-Onsager algebra.
@article{SIGMA_2011_7_a68,
     author = {Paul Terwilliger},
     title = {The {Universal} {Askey{\textendash}Wilson} {Algebra}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a68/}
}
TY  - JOUR
AU  - Paul Terwilliger
TI  - The Universal Askey–Wilson Algebra
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a68/
LA  - en
ID  - SIGMA_2011_7_a68
ER  - 
%0 Journal Article
%A Paul Terwilliger
%T The Universal Askey–Wilson Algebra
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a68/
%G en
%F SIGMA_2011_7_a68
Paul Terwilliger. The Universal Askey–Wilson Algebra. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a68/

[1] Alperin R. C., “Notes: $\rm{PSL}_2(\mathbb Z)=\mathbb Z_2\star\mathbb Z_3$”, Amer. Math. Monthly, 100 (1993), 385–386 | DOI | MR | Zbl

[2] Aneva B., “Tridiagonal symmetries of models of nonequilibrium physics”, SIGMA, 4 (2008), 056, 16 pp., arXiv: 0807.4391 | DOI | MR | Zbl

[3] Askey R., Wilson J., Some basic hypergeometric polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc., 54, no. 319, 1985 | MR

[4] Atakishiyev N. M., Klimyk A. U., “Representations of the quantum algebra ${\rm su}_q(1,1)$ and duality of $q$-orthogonal polynomials”, Algebraic Structures and their Representations, Contemp. Math., 376, Amer. Math. Soc., Providence, RI, 2005, 195–206 | MR | Zbl

[5] Atakishiyev M. N., Groza V., “The quantum algebra {$U\sb q(\rm su\sb2)$} and $q$-Krawtchouk families of polynomials”, J. Phys. A: Math. Gen., 37 (2004), 2625–2635 | DOI | MR | Zbl

[6] Atakishiyev M. N., Atakishiyev N. M., Klimyk A. U., “Big $q$-Laguerre and $q$-Meixner polynomials and representations of the quantum algebra $U\sb q({\rm su}\sb {1,1})$”, J. Phys. A: Math. Gen., 36 (2003), 10335–10347, arXiv: math.QA/0306201 | DOI | MR | Zbl

[7] Baseilhac P., “An integrable structure related with tridiagonal algebras”, Nuclear Phys. B, 705 (2005), 605–619, arXiv: math-ph/0408025 | DOI | MR | Zbl

[8] Baseilhac P., “Deformed Dolan–Grady relations in quantum integrable models”, Nuclear Phys. B, 709 (2005), 491–521, arXiv: hep-th/0404149 | DOI | MR | Zbl

[9] Baseilhac P., Koizumi K., “A new (in)finite-dimensional algebra for quantum integrable models”, Nuclear Phys. B, 720 (2005), 325–347, arXiv: math-ph/0503036 | DOI | MR | Zbl

[10] Baseilhac P., Koizumi K., “A deformed analogue of Onsager's symmetry in the $XXZ$ open spin chain”, J. Stat. Mech. Theory Exp., 2005:10 (2005), P10005, 15 pp., arXiv: hep-th/0507053 | DOI | MR

[11] Baseilhac P., “The $q$-deformed analogue of the Onsager algebra: beyond the Bethe ansatz approach”, Nuclear Phys. B, 754 (2006), 309–328, arXiv: math-ph/0604036 | DOI | MR | Zbl

[12] Baseilhac P., “A family of tridiagonal pairs and related symmetric functions”, J. Phys. A: Math. Gen., 39 (2006), 11773–11791, arXiv: math-ph/0604035 | DOI | MR | Zbl

[13] Baseilhac P., Koizumi K., “Exact spectrum of the $XXZ$ open spin chain from the $q$-Onsager algebra representation theory”, J. Stat. Mech. Theory Exp., 2007:9 (2007), P09006, 27 pp., arXiv: hep-th/0703106 | DOI | MR

[14] Baseilhac P., Belliard S., “Generalized $q$-Onsager algebras and boundary affine Toda field theories”, Lett. Math. Phys., 93 (2010), 213–228, arXiv: 0906.1215 | DOI | MR | Zbl

[15] Baseilhac P., Shigechi K., “A new current algebra and the reflection equation”, Lett. Math. Phys., 92 (2010), 47–65, arXiv: 0906.1482 | DOI | MR | Zbl

[16] Bergman G., “The diamond lemma for ring theory”, Adv. Math., 29 (1978), 178–218 | DOI | MR

[17] Carter R., Lie algebras of finite and affine type, Cambridge Studies in Advanced Mathematics, 96, Cambridge University Press, Cambridge, 2005 | DOI | MR | Zbl

[18] Ciccoli N., Gavarini F., “A quantum duality principle for coisotropic subgroups and Poisson quotients”, Adv. Math., 199 (2006), 104–135, arXiv: math.QA/0412465 | DOI | MR | Zbl

[19] Curtin B., “Spin Leonard pairs”, Ramanujan J., 13 (2007), 319–332 | DOI | MR | Zbl

[20] Curtin B., “Modular Leonard triples”, Linear Algebra Appl., 424 (2007), 510–539 | DOI | MR | Zbl

[21] Etingof P., Ginzburg V., “Noncommutative del Pezzo surfaces and Calabi–Yau algebras”, J. Eur. Math. Soc., 12 (2010), 1371–1416, arXiv: 0709.3593 | DOI | MR | Zbl

[22] Fairlie D. B., “Quantum deformations of SU(2)”, J. Phys. A: Math. Gen., 23 (1990), L183–L187 | DOI | MR | Zbl

[23] Floratos E. G., Nicolis S., “An SU(2) analogue of the Azbel–Hofstadter Hamiltonian”, J. Phys. A: Math. Gen., 31 (1998), 3961–3975, arXiv: hep-th/9508111 | DOI | MR | Zbl

[24] Soviet Phys. JETP, 67 (1988), 1982–1985 | MR

[25] Granovskiĭ Ya. I., Lutzenko I. M., Zhedanov A. S., “Mutual integrability, quadratic algebras, and dynamical symmetry”, Ann. Physics, 217 (1992), 1–20 | DOI | MR | Zbl

[26] Granovskiĭ Ya. I., Zhedanov A. S., “Linear covariance algebra for ${\rm {s}{l}}\sb q(2)$”, J. Phys. A: Math. Gen., 26 (1993), L357–L359 | DOI | MR | Zbl

[27] Grünbaum F. A., Haine L., “On a $q$-analogue of the string equation and a generalization of the classical orthogonal polynomials”, Algebraic Methods and $q$-Special Functions (Montréal, QC, 1996), CRM Proc. Lecture Notes, 22, Amer. Math. Soc., Providence, RI, 1999, 171–181

[28] Havlíček M., Klimyk A. U., Posta S., “Representations of the cyclically symmetric $q$-deformed algebra ${\rm so}_q (3)$”, J. Math. Phys., 40 (1999), 2135–2161, arXiv: math.QA/9805048 | DOI | MR | Zbl

[29] Havlíček M., Pošta S., “On the classification of irreducible finite-dimensional representations of $U'_q({\rm so}_3)$ algebra”, J. Math. Phys., 42 (2001), 472–500 | DOI | MR | Zbl

[30] Ion B., Sahi S., “Triple groups and Cherednik algebras”, Jack, Hall–Littlewood and Macdonald Polynomials, Contemp. Math., 417, Amer. Math. Soc., Providence, RI, 2006, 183–206, arXiv: math.QA/0304186 | MR | Zbl

[31] Ito T., Tanabe K., Terwilliger P., “Some algebra related to ${P}$- and ${Q}$-polynomial association schemes”, Codes and Association Schemes (Piscataway, NJ, 1999), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 56, Amer. Math. Soc., Providence, RI, 2001, 167–192, arXiv: math.CO/0406556 | MR | Zbl

[32] Ito T., Terwilliger P., “Double affine Hecke algebras of rank 1 and the $\mathbb Z_3$-symmetric Askey–Wilson relations”, SIGMA, 6 (2010), 065, 9 pp., arXiv: 1001.2764 | DOI | MR | Zbl

[33] Ito T., Terwilliger P., “Tridiagonal pairs of $q$-Racah type”, J. Algebra, 322 (2009), 68–93, arXiv: 0807.0271 | DOI | MR | Zbl

[34] Ito T., Terwilliger P., “The augmented tridiagonal algebra”, Kyushu J. Math., 64 (2010), 81–144, arXiv: 0904.2889 | DOI | MR | Zbl

[35] Jordan D. A., Sasom N., “Reversible skew Laurent polynomial rings and deformations of Poisson automorphisms”, J. Algebra Appl., 8 (2009), 733–757, arXiv: 0708.3923 | DOI | MR | Zbl

[36] Kalnins E., Miller W., Post S., “Models for quadratic algebras associated with second order superintegrable systems in 2D”, SIGMA, 4 (2008), 008, 21 pp., arXiv: 0801.2848 | DOI | MR | Zbl

[37] Koekoek R., Lesky P. A., Swarttouw R., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl

[38] Koornwinder K. H., “The relationship between Zhedanov's algebra $AW(3)$ and the double affine Hecke algebra in the rank one case”, SIGMA, 3 (2007), 063, 15 pp., arXiv: math.QA/0612730 | DOI | MR | Zbl

[39] Koornwinder K. H., “Zhedanov's algebra $AW(3)$ and the double affine Hecke algebra in the rank one case. II. The spherical subalgebra”, SIGMA, 4 (2008), 052, 17 pp., arXiv: 0711.2320 | DOI | MR | Zbl

[40] Korovnichenko A., Zhedanov A., “Classical Leonard triples”, Elliptic Integrable Systems (Kyoto, 2004), Rokko Lectures in Mathematics, 18, eds. M. Noumi and K. Takasaki, Kobe University, 2005, 71–84

[41] Lavrenov A. N., “Relativistic exactly solvable models”, Proceedings VIII International Conference on Symmetry Methods in Physics (Dubna, 1997), Phys. Atomic Nuclei, 61, 1998, 1794–1796 | MR

[42] Lavrenov A. N., “On Askey–Wilson algebra”, Quantum Groups and Integrable Systems (Prague, 1997), v. II, Czechoslovak J. Phys., 47, 1997, 1213–1219 | DOI | MR | Zbl

[43] Lavrenov A. N., “Deformation of the Askey–Wilson algebra with three generators”, J. Phys. A: Math. Gen., 28 (1995), L503–L506 | DOI | MR | Zbl

[44] Nomura K., Terwilliger P., “Linear transformations that are tridiagonal with respect to both eigenbases of a Leonard pair”, Linear Algebra Appl., 420 (2007), 198–207, arXiv: math.RA/0605316 | DOI | MR | Zbl

[45] Oblomkov A., “Double affine Hecke algebras of rank 1 and affine cubic surfaces”, Int. Math. Res. Not., 2004:18 (2004), 877–912, arXiv: math.RT/0306393 | DOI | MR | Zbl

[46] Odake S., Sasaki R., “Orthogonal polynomials from Hermitian matrices”, J. Math. Phys., 49 (2008), 053503, 43 pp., arXiv: 0712.4106 | DOI | MR | Zbl

[47] Odake S., Satoru R., “Unified theory of exactly and quasiexactly solvable “discrete” quantum mechanics. I. Formalism”, J. Math. Phys., 51 (2010), 083502, 24 pp., arXiv: 0903.2604 | DOI | MR

[48] Odesskii M., “An analogue of the Sklyanin algebra”, Funct. Anal. Appl., 20 (1986), 152–154 | DOI | MR

[49] Rosenberg A. L., Noncommutative algebraic geometry and representations of quantized algebras, Mathematics and its Applications, 330, Kluwer Academic Publishers Group, Dordrecht, 1995 | MR | Zbl

[50] Rosengren H., Multivariable orthogonal polynomials as coupling coefficients for Lie and quantum algebra representations, Ph.D. Thesis, Centre for Mathematical Sciences, Lund University, Sweden, 1999

[51] Rosengren H., “An elementary approach to $6j$-symbols (classical, quantum, rational, trigonometric, and elliptic)”, Ramanujan J., 13 (2007), 131–166, arXiv: math.CA/0312310 | DOI | MR | Zbl

[52] Smith S. P., Bell A. D., Some 3-dimensional skew polynomial rings, Unpublished lecture notes, 1991

[53] Terwilliger P., “The subconstituent algebra of an association scheme. III”, J. Algebraic Combin., 2 (1993), 177–210 | DOI | MR | Zbl

[54] Terwilliger P., “Two linear transformations each tridiagonal with respect to an eigenbasis of the other”, Linear Algebra Appl., 330 (2001), 149–203, arXiv: math.RA/0406555 | DOI | MR | Zbl

[55] Terwilliger P., “Two relations that generalize the $q$-Serre relations and the Dolan–Grady relations”, Physics and Combinatorics 1999 (Nagoya), World Sci. Publ., River Edge, NJ, 2001, 377–398, arXiv: math.QA/0307016 | DOI | MR | Zbl

[56] Terwilliger P., “An algebraic approach to the Askey scheme of orthogonal polynomials”, Orthogonal Polynomials and Special Functions, Lecture Notes in Math., 1883, Springer, Berlin, 2006, 255–330, arXiv: math.QA/0408390 | DOI | MR | Zbl

[57] Terwilliger P., Vidunas R., “Leonard pairs and the Askey–Wilson relations”, J. Algebra Appl., 3 (2004), 411–426, arXiv: math.QA/0305356 | DOI | MR | Zbl

[58] Vidar M., “Tridiagonal pairs of shape $(1,2,1)$”, Linear Algebra Appl., 429 (2008), 403–428, arXiv: 0802.3165 | DOI | MR | Zbl

[59] Vidunas R., “Normalized Leonard pairs and Askey–Wilson relations”, Linear Algebra Appl., 422 (2007), 39–57, arXiv: math.RA/0505041 | DOI | MR | Zbl

[60] Vidunas R., “Askey–Wilson relations and Leonard pairs”, Discrete Math., 308 (2008), 479–495, arXiv: math.QA/0511509 | DOI | MR | Zbl

[61] Vinet L., Zhedanov A. S., “Quasi-linear algebras and integrability (the Heisenberg picture)”, SIGMA, 4 (2008), 015, 22 pp., arXiv: 0802.0744 | DOI | MR | Zbl

[62] Vinet L., Zhedanov A. S., “A “missing” family of classical orthogonal polynomials”, J. Phys. A: Math. Theor., 44 (2011), 085201, 16 pp., arXiv: 1011.1669 | DOI | MR | Zbl

[63] Vinet L., Zhedanov A. S., “A limit $q=-1$ for the big $q$-Jacobi polynomials”, Trans. Amer. Math. Soc. (to appear) , arXiv: 1011.1429

[64] Wiegmann P. B., Zabrodin A. V., “Algebraization of difference eigenvalue equations related to $U_q(sl_2)$”, Nuclear Phys. B, 451 (1995), 699–724, arXiv: cond-mat/9501129 | DOI | MR | Zbl

[65] Zhedanov A. S., ““Hidden symmetry” of the Askey–Wilson polynomials”, Theoret. and Math. Phys., 89 (1991), 1146–1157 | DOI | MR | Zbl

[66] Zhedanov A. S., Korovnichenko A., ““Leonard pairs” in classical mechanics”, J. Phys. A: Math. Gen., 35 (2002), 5767–5780 | DOI | MR | Zbl