@article{SIGMA_2011_7_a67,
author = {Galina Filipuk and Walter Van Assche},
title = {Recurrence {Coefficients} of a {New} {Generalization} of the {Meixner} {Polynomials}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a67/}
}
TY - JOUR AU - Galina Filipuk AU - Walter Van Assche TI - Recurrence Coefficients of a New Generalization of the Meixner Polynomials JO - Symmetry, integrability and geometry: methods and applications PY - 2011 VL - 7 UR - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a67/ LA - en ID - SIGMA_2011_7_a67 ER -
Galina Filipuk; Walter Van Assche. Recurrence Coefficients of a New Generalization of the Meixner Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a67/
[1] Abramowitz M., Stegun I., Handbook of mathematical functions, Dover Publications, New York, 1965
[2] Boelen L., Filipuk G., Van Assche W., “Recurrence coefficients of generalized Meixner polynomials and Painlevé equations”, J. Phys. A: Math. Theor., 44 (2011), 035202, 19 pp. | DOI | MR | Zbl
[3] Chihara T. S., An introduction to orthogonal polynomials, Mathematics and its Applications, 13, Gordon and Breach Science Publishers, New York – London – Paris, 1978 | MR | Zbl
[4] Filipuk G., Van Assche W., Zhang L., On the recurrence coefficients of semiclassical Laguerre polynomials, arXiv: 1105.5229
[5] Filipuk G., Van Assche W., Recurrence coefficients of the generalized Charlier polynomials and the fifth Painlevé equation, arXiv: 1106.2959
[6] Gromak V., Filipuk G., “On functional relations between solutions of the fifth Painlevé equation”, Differ. Equ., 37 (2001), 614–620 | DOI | MR | Zbl
[7] Gromak V., Filipuk G., “The Bäcklund transformations of the fifth Painlevé equation and their applications”, Math. Model. Anal., 6 (2001), 221–230 | DOI | MR | Zbl
[8] Gromak V., Filipuk G., “Bäcklund transformations of the fifth Painlevé equation and their applications”, Proceedings of the Summer School “Complex Differential and Functional Equations” (Mekrijärvi, 2000), Univ. Joensuu Dept. Math. Rep. Ser., 5, Univ. Joensuu, Joensuu, 2003, 9–20 | MR | Zbl
[9] Gromak V. I., Laine I., Shimomura S., Painlevé differential equations in the complex plane, de Gruyter Studies in Mathematics, 28, Walter de Gruyter Co., Berlin, 2002 | MR | Zbl
[10] Magnus A. P., “Painlevé type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials”, J. Comput. Appl. Math., 57 (1995), 215–237, arXiv: math.CA/9307218 | DOI | MR | Zbl
[11] Noumi M., Painlevé equations through symmetry, Translations of Mathematical Monographs, 223, American Mathematical Society, Providence, RI, 2004 | MR | Zbl
[12] Smet C., Van Assche W., “Orthogonal polynomials on a bi-lattice”, Constr. Approx. (to appear) , arXiv: 1101.1817