Recurrence Coefficients of a New Generalization of the Meixner Polynomials
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate new generalizations of the Meixner polynomials on the lattice $\mathbb{N}$, on the shifted lattice $\mathbb{N}+1-\beta$ and on the bi-lattice $\mathbb{N}\cup(\mathbb{N}+1-\beta)$. We show that the coefficients of the three-term recurrence relation for the orthogonal polynomials are related to the solutions of the fifth Painlevé equation P$_{\textup V}$. Initial conditions for different lattices can be transformed to the classical solutions of P$_{\textup V}$ with special values of the parameters. We also study one property of the Bäcklund transformation of P$_{\textup V}$.
Keywords: Painlevé equations; Bäcklund transformations; classical solutions; orthogonal polynomials; recurrence coefficients.
@article{SIGMA_2011_7_a67,
     author = {Galina Filipuk and Walter Van Assche},
     title = {Recurrence {Coefficients} of a {New} {Generalization} of the {Meixner} {Polynomials}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a67/}
}
TY  - JOUR
AU  - Galina Filipuk
AU  - Walter Van Assche
TI  - Recurrence Coefficients of a New Generalization of the Meixner Polynomials
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a67/
LA  - en
ID  - SIGMA_2011_7_a67
ER  - 
%0 Journal Article
%A Galina Filipuk
%A Walter Van Assche
%T Recurrence Coefficients of a New Generalization of the Meixner Polynomials
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a67/
%G en
%F SIGMA_2011_7_a67
Galina Filipuk; Walter Van Assche. Recurrence Coefficients of a New Generalization of the Meixner Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a67/

[1] Abramowitz M., Stegun I., Handbook of mathematical functions, Dover Publications, New York, 1965

[2] Boelen L., Filipuk G., Van Assche W., “Recurrence coefficients of generalized Meixner polynomials and Painlevé equations”, J. Phys. A: Math. Theor., 44 (2011), 035202, 19 pp. | DOI | MR | Zbl

[3] Chihara T. S., An introduction to orthogonal polynomials, Mathematics and its Applications, 13, Gordon and Breach Science Publishers, New York – London – Paris, 1978 | MR | Zbl

[4] Filipuk G., Van Assche W., Zhang L., On the recurrence coefficients of semiclassical Laguerre polynomials, arXiv: 1105.5229

[5] Filipuk G., Van Assche W., Recurrence coefficients of the generalized Charlier polynomials and the fifth Painlevé equation, arXiv: 1106.2959

[6] Gromak V., Filipuk G., “On functional relations between solutions of the fifth Painlevé equation”, Differ. Equ., 37 (2001), 614–620 | DOI | MR | Zbl

[7] Gromak V., Filipuk G., “The Bäcklund transformations of the fifth Painlevé equation and their applications”, Math. Model. Anal., 6 (2001), 221–230 | DOI | MR | Zbl

[8] Gromak V., Filipuk G., “Bäcklund transformations of the fifth Painlevé equation and their applications”, Proceedings of the Summer School “Complex Differential and Functional Equations” (Mekrijärvi, 2000), Univ. Joensuu Dept. Math. Rep. Ser., 5, Univ. Joensuu, Joensuu, 2003, 9–20 | MR | Zbl

[9] Gromak V. I., Laine I., Shimomura S., Painlevé differential equations in the complex plane, de Gruyter Studies in Mathematics, 28, Walter de Gruyter Co., Berlin, 2002 | MR | Zbl

[10] Magnus A. P., “Painlevé type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials”, J. Comput. Appl. Math., 57 (1995), 215–237, arXiv: math.CA/9307218 | DOI | MR | Zbl

[11] Noumi M., Painlevé equations through symmetry, Translations of Mathematical Monographs, 223, American Mathematical Society, Providence, RI, 2004 | MR | Zbl

[12] Smet C., Van Assche W., “Orthogonal polynomials on a bi-lattice”, Constr. Approx. (to appear) , arXiv: 1101.1817