$1+1$ Gaudin Model
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study $1+1$ field-generalizations of the rational and elliptic Gaudin models. For ${\rm sl}(N)$ case we introduce equations of motion and L-A pair with spectral parameter on the Riemann sphere and elliptic curve. In ${\rm sl}(2)$ case we study the equations in detail and find the corresponding Hamiltonian densities. The $n$-site model describes $n$ interacting Landau–Lifshitz models of magnets. The interaction depends on position of the sites (marked points on the curve). We also analyze the $2$-site case in its own right and describe its relation to the principal chiral model. We emphasize that $1+1$ version impose a restriction on a choice of flows on the level of the corresponding $0+1$ classical mechanics.
Keywords: integrable systems; field theory; Gaudin models.
@article{SIGMA_2011_7_a66,
     author = {Andrei V. Zotov},
     title = {$1+1$ {Gaudin} {Model}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a66/}
}
TY  - JOUR
AU  - Andrei V. Zotov
TI  - $1+1$ Gaudin Model
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a66/
LA  - en
ID  - SIGMA_2011_7_a66
ER  - 
%0 Journal Article
%A Andrei V. Zotov
%T $1+1$ Gaudin Model
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a66/
%G en
%F SIGMA_2011_7_a66
Andrei V. Zotov. $1+1$ Gaudin Model. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a66/

[1] Gaudin M., “Diagonalisation dùne classe d'Hamiltoniens de spin”, J. Physique, 37 (1976), 1087–1098 ; Gaudin M., La fonction d'onde de Bethe, Masson, Paris, 1983 (in French) ; Mir, Moscow, 1987 (in Russian) | DOI | MR | MR | Zbl | MR

[2] Baxter R. J., “One-dimensional anisotropic Heisenberg chain”, Ann. Physics, 70 (1972), 323–337 | DOI | MR

[3] Sklyanin E. K., Takebe T., “Algebraic bethe ansatz for the XYZ Gaudin model”, Phys. Lett. A, 219 (1996), 217–225, arXiv: q-alg/9601028 | DOI | MR | Zbl

[4] Zotov A., “Elliptic linear problem for Calogero–Inozemtsev model and Painlevé VI equation”, Lett. Math. Phys., 67 (2004), 153–165, arXiv: ; Levin A., Olshanetsky M., Zotov A., “Painlevé VI, rigid tops and reflection equation”, Comm. Math. Phys., 268 (2006), 67–103, arXiv: hep-th/0310260math.QA/0508058 | DOI | MR | Zbl | DOI | MR | Zbl

[5] Levin A., Zotov A., “On rational and elliptic forms of Painlevé VI equation”, Amer. Math. Soc. Transl. Ser. 2, 221, Amer. Math. Soc., Providence, RI, 173–184

[6] Fuchs R., “Über lineare homogene Differentialgleichungen zweiterordnung mit im endlich gelegne wesentlich singulären Stellen”, Math. Ann., 63 (1907), 301–323 ; Schlesinger L., “Über eine Klasse von Differentialsystemen beliebiger Ordnung mit festen kritischen Punkten”, J. Reine Angew. Math., 141 (1912), 96–145 | DOI | MR | DOI | Zbl

[7] Reyman A. G., Semenov-Tian-Shansky M. A., “Lie algebras and Lax equations with spectral parameter on an elliptic curve”, Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova, 150, 1986, 104–118 (in Russian)

[8] Funct. Anal. Appl., 16 (1982), 159–180 | DOI | MR

[9] Zotov A. V., Levin A. M., Olshanetsky M. A., Chernyakov Yu. B., “Quadratic algebras related to elliptic curves”, Theoret. and Math. Phys., 156 (2008), 1103–1122, arXiv: 0710.1072 | DOI | MR | Zbl

[10] Sklyanin E. K., “Separation of variables in the Gaudin model”, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 164, 1987, 151–169 ; English transl.: J. Soviet Math., 47 (1989), 2473–2488 ; Sklyanin E. K., Takebe T., “Separation of variables in the elliptic Gaudin model”, Comm. Math. Phys., 204 (1999), 17–38, arXiv: solv-int/9807008 | MR | DOI | Zbl | DOI | MR | Zbl

[11] Sklyanin E. K., “Generating function of correlators in the ${\rm sl}_2$ Gaudin model”, Lett. Math. Phys., 47 (1999), 275–292, arXiv: ; Takasaki K., “Gaudin model, KZ equation and an isomonodromic problem on the tours”, Lett. Math. Phys., 44 (1998), 143–156, arXiv: ; Feigin B., Frenkel E., Reshetikhin N., “Gaudin model, Bethe ansatz and critical level”, Comm. Math. Phys., 166 (1994), 27–62, arXiv: ; Gould M. D., Zhang Y.-Z., Zhao S.-Y., “Elliptic Gaudin models and elliptic KZ equations”, Nuclear Phys. B, 630 (2002), 492–508, arXiv: ; Chernyakov Yu., Levin A., Olshanetsky M., Zotov A., “Elliptic Schlesinger system and Painlevé VI”, J. Phys. A: Math. Gen., 39 (2006), 12083–12101, arXiv: solv-int/9708007hep-th/9711058hep-th/9402022nlin.SI/0110038nlin.SI/0602043 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[12] Khesin B., Levin A., Olshanetsky M., “Bihamiltonian structures and quadratic algebras in hydrodynamics and on non-commutative torus”, Comm. Math. Phys., 250 (2004), 581–612, arXiv: nlin.SI/0309017 | DOI | MR | Zbl

[13] Petrera M., Suris Yu. B., “An integrable discretization of the rational ${\mathfrak{su}}(2)$ Gaudin model and related systems”, Comm. Math. Phys., 283 (2008), 227–253, arXiv: ; Ragnisco O., Zullo F., “Bäcklund transformations for the trigonometric Gaudin magnet”, SIGMA, 6 (2010), 012, 6 pp., arXiv: ; Veselov A. P., “What is an integrable mapping?”, What is Integrability?, Springer Ser. Nonlinear Dynam., eds. V. E. Zakharov, Springer, Berlin, 1991, 251–272 ; Hone A. N. W., Kuznetsov V. B., Ragnisco O., “Bäcklund transformations for the ${\rm sl}(2)$ Gaudin magnet”, J. Phys. A: Math. Gen., 34 (2001), 2477–2490, arXiv: 0707.40880912.2456nlin.SI/0007041 | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl | DOI | MR | Zbl

[14] Funct. Anal. Appl., 40 (2006), 73–77 ; Rubtsov V., Silantyev A., Talalaev D., “Manin matrices, quantum elliptic commutative families and characteristic polynomial of elliptic Gaudin model”, SIGMA, 5 (2009), 110, 22 pp., arXiv: 0908.4064 | DOI | DOI | MR | MR | Zbl | Zbl

[15] Frenkel E., Affine algebras, Langlands duality and Bethe ansatz, arXiv: q-alg/9506003 | MR

[16] Enriquez B., Rubtsov V., “Hitchin systems, higher Gaudin operators and $R$-matrices”, Math. Res. Lett., 3 (1996), 343–357, arXiv: alg-geom/9503010 | MR | Zbl

[17] Hitchin N., “Stable bundles and integrable systems”, Duke Math. J., 54 (1987), 91–114 | DOI | MR | Zbl

[18] Nekrasov N., “Holomorphic bundles and many-body systems”, Comm. Math. Phys., 180 (1996), 587–603, arXiv: ; Gorsky A., Nekrasov N., Elliptic Calogero–Moser system from two dimensional current algebra, arXiv: hep-th/9503157hep-th/9401021 | DOI | MR | Zbl

[19] Levin A., Olshanetsky M., Zotov A., “Hitchin systems – symplectic Hecke correspondence and two-dimensional version”, Comm. Math. Phys., 236 (2003), 93–133, arXiv: ; Levin A., Zotov A., “An integrable system of interacting elliptic tops”, Teoret. Mat. Fiz., 146 (2006), 55–64 nlin.SI/0110045 | DOI | MR | Zbl | MR | Zbl

[20] Theoret. and Math. Phys., 146 (2006), 45–52 | DOI | DOI | MR | MR | Zbl | Zbl

[21] Funct. Anal. Appl., 26 (1992), 302–304 | DOI | MR | Zbl

[22] Funct. Anal. Appl., 8 (1974), 226–235 | DOI | Zbl

[23] Faddeev L., Takhtajan L., Hamiltonian approach to solitons theory, Nauka, Moscow, 1986 (in Russian)

[24] Dubrovin B. A., Krichever I. M., Novikov S. P., “Integrable systems. I”, Current Problems in Mathematics. Fundamental Directions, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., 4, Moscow, 1985, 179–284 (in Russian) ; Mikhailov A. V., Schabat A. B., Yamilov R. I., “The symmetry approach to classification of nonlinear equations. Complete list of integrable systems”, Uspekhi Mat. Nauk, 42:4 (1987), 3–53 | MR | MR

[25] Russian Math. Surveys, 42:4 (1987), 1–63 ; Fokas A. S., “Symmetries and integrability”, Stud. Appl. Math., 77 (1987), 253–299 | DOI | MR | MR | MR | Zbl

[26] Landau L., Lifshitz E., “On the theory of the dispersion of magnetic permeability in ferromagnetic bodies”, Phys. Zeitsch. der Sow., 8 (1935), 153–169 ; Borovik A. E., Robuk V. N., “Linear pseudopotentials and conservation laws for the Landau–Lifshits equation describing the nonlinear dynamics of a ferromagnet with uniaxial anisotropy”, Teoret. Mat. Fiz., 46 (1981), 371–381 | Zbl | MR

[27] Theoret. and Math. Phys., 46 (1981), 242–248 ; Takhtajan L. A., Faddeev L. D., “The quantum method of the inverse problem and the Heisenberg XYZ model”, Uspekhi Mat. Nauk, 34:5 (1979), 13–63 | DOI | MR | MR

[28] Russian Math. Surveys, 34:5 (1979), 11–68 | DOI | DOI | MR | Zbl

[29] Zakharov V. E., Mikhailov A. V., “Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering problem method”, Soviet Phys. JETP, 74 (1978), 1953–1973 ; Pohlmeyer K., “Integrable Hamiltonian systems and interactions through quadratic constraints”, Comm. Math. Phys., 46 (1976), 207–221 | MR | DOI | MR | Zbl

[30] Theoret. and Math. Phys., 38 (1979), 120–124 ; Cherednik I. V., “Relativistically invariant quasiclassical limits of integrable two-dimensional quantum models”, Teoret. Mat. Fiz., 47 (1981), 225–229 | DOI | DOI | MR | MR

[31] Theoret. and Math. Phys., 47 (1981), 422–425 | DOI | DOI | MR | MR

[32] Krichever I., “Vector bundles and Lax equations on algebraic curves”, Comm. Math. Phys., 229 (2002), 229–269, arXiv: hep-th/0108110 | DOI | MR | Zbl

[33] Russian Math. Surveys, 31:1 (1976), 59–146 | DOI | MR | Zbl | Zbl

[34] Theoret. and Math. Phys., 124 (2000), 909–917 | DOI | MR | Zbl

[35] Funct. Anal. Appl., 36 (2002), 253–266, arXiv: hep-th/0203192 | DOI | MR

[36] Skrypnik T., “‘Doubled’ generalized Landau–Lifshiz hierarchies and special quasigraded Lie algebras”, J. Phys. A: Math. Gen., 37 (2004), 7755–7768 | DOI | MR

[37] Theoret. and Math. Phys., 70 (1987), 11–19 | DOI | MR

[38] Theoret. and Math. Phys., 61 (1984), 1099–1107 | DOI | MR

[39] Weyl A., Elliptic functions according to Eisenstein and Kronecker, Ergebnisse der Mathematik und ihrer Grenzgebiete, 88, Springer-Verlag, Berlin – New York, 1976 | MR

[40] Mumford D., Tata lectures on theta, v. I, Progress in Mathematics, 28, Birkhäuser Boston, Inc., Boston, MA, 1983 ; Mumford D., Tata lectures on theta, v. II, Progress in Mathematics, 43, Jacobian theta functions and differential equations, Birkhäuser Boston, Inc., Boston, MA, 1984 | MR | Zbl | MR | Zbl