@article{SIGMA_2011_7_a65,
author = {Stephen C. Anco and Sajid Ali and Thomas Wolf},
title = {Exact {Solutions} of {Nonlinear} {Partial} {Differential} {Equations} by the {Method} of {Group} {Foliation} {Reduction}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a65/}
}
TY - JOUR AU - Stephen C. Anco AU - Sajid Ali AU - Thomas Wolf TI - Exact Solutions of Nonlinear Partial Differential Equations by the Method of Group Foliation Reduction JO - Symmetry, integrability and geometry: methods and applications PY - 2011 VL - 7 UR - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a65/ LA - en ID - SIGMA_2011_7_a65 ER -
%0 Journal Article %A Stephen C. Anco %A Sajid Ali %A Thomas Wolf %T Exact Solutions of Nonlinear Partial Differential Equations by the Method of Group Foliation Reduction %J Symmetry, integrability and geometry: methods and applications %D 2011 %V 7 %U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a65/ %G en %F SIGMA_2011_7_a65
Stephen C. Anco; Sajid Ali; Thomas Wolf. Exact Solutions of Nonlinear Partial Differential Equations by the Method of Group Foliation Reduction. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a65/
[1] Ovsiannikov L. V., Group analysis of differential equations, Academic Press, Inc., New York – London, 1982 | MR | Zbl
[2] Olver P. J., Applications of Lie groups to differential equations, Graduate Texts in Mathematics, 107, 2nd ed., Springer-Verlag, New York, 1993 | MR | Zbl
[3] Bluman G., Anco S. C., Symmetry and integration methods for differential equations, Applied Mathematical Sciences, 154, Springer-Verlag, New York, 2002 | MR | Zbl
[4] Anco S. C., Liu S., “Exact solutions of semilinear radial wave equations in $n$ dimensions”, J. Math. Anal. Appl., 297 (2004), 317–342, arXiv: math-ph/0309049 | DOI | MR | Zbl
[5] Anco S. C., Ali S., Wolf T., “Symmetry analysis and exact solutions of semilinear heat flow in multi-dimensions”, J. Math. Anal. Appl., 379 (2011), 748–763, arXiv: 1011.4633 | DOI | MR | Zbl
[6] Dorodnitsyn V. A., “On invariant solutions of the equation of nonlinear heat conduction with a source”, USSR Comp. Math. Math. Phys., 22 (1982), 115–122 | DOI | MR | Zbl
[7] Galaktionov V. A., Svirshchevskii S. R., Exact solutions and invariant subspaces of nonlinear partial differential equations in mechanics and physics, Chapman Hall/CRC, Boca Raton, 2007 | MR | Zbl
[8] Wolf T., “Applications of CRACK in the classification of integrable systems”, Superintegrability in Classical and Quantum Systems, CRM Proc. Lecture Notes, 37, Amer. Math. Soc., Providence, RI, 2004, 283–300 http://lie.math.brocku.ca/crack/demo/ | MR | Zbl
[9] Clarkson P. A., Mansfield E. L., “Symmetry reductions and exact solutions of a class of nonlinear heat equations”, Phys. D, 70 (1993), 250–288, arXiv: solv-int/9306002 | DOI | MR
[10] Arrigo D. J., Hill J. M., Broadbridge P., “Nonclassical symmetry reductions of the linear diffusion equation with a nonlinear source”, IMA J. Appl. Math., 52 (1994), 1–24 | DOI | MR | Zbl
[11] Vijayakumar K., “On the integrability and exact solutions of the nonlinear diffusion equation with a nonlinear source”, J. Austral. Math. Soc. Ser. B, 39 (1998), 513–517 | DOI | MR
[12] Qu C., Zhang S.-L., “Group foliation method and functional separation of variables to nonlinear diffusion equations”, Chinese Phys. Lett., 22 (2005), 1563–1566 | DOI
[13] Golovin S. V., “Applications of the differential invariants of infinite dimensional groups in hydrodynamics”, Commun. Nonlinear Sci. Numer. Simul., 9 (2004), 35–51 | DOI | MR | Zbl
[14] Nutku Y., Sheftel M. B., “Differential invariants and group foliation for the complex Monge–Ampère equation”, J. Phys. A: Math. Gen., 34 (2001), 137–156 | DOI | MR | Zbl
[15] Sheftel M. B., “Method of group foliation and non-invariant solutions of partial differential equations. Example: the heavenly equation”, Eur. Phys. J. B Condens. Matter Phys., 29 (2002), 203–206 | DOI | MR