Exact Solutions of Nonlinear Partial Differential Equations by the Method of Group Foliation Reduction
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A novel symmetry method for finding exact solutions to nonlinear PDEs is illustrated by applying it to a semilinear reaction-diffusion equation in multi-dimensions. The method uses a separation ansatz to solve an equivalent first-order group foliation system whose independent and dependent variables respectively consist of the invariants and differential invariants of a given one-dimensional group of point symmetries for the reaction-diffusion equation. With this group-foliation reduction method, solutions of the reaction-diffusion equation are obtained in an explicit form, including group-invariant similarity solutions and travelling-wave solutions, as well as dynamically interesting solutions that are not invariant under any of the point symmetries admitted by this equation.
Keywords: semilinear heat equation; similarity reduction; exact solutions; group foliation; symmetry.
@article{SIGMA_2011_7_a65,
     author = {Stephen C. Anco and Sajid Ali and Thomas Wolf},
     title = {Exact {Solutions} of {Nonlinear} {Partial} {Differential} {Equations} by the {Method} of {Group} {Foliation} {Reduction}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a65/}
}
TY  - JOUR
AU  - Stephen C. Anco
AU  - Sajid Ali
AU  - Thomas Wolf
TI  - Exact Solutions of Nonlinear Partial Differential Equations by the Method of Group Foliation Reduction
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a65/
LA  - en
ID  - SIGMA_2011_7_a65
ER  - 
%0 Journal Article
%A Stephen C. Anco
%A Sajid Ali
%A Thomas Wolf
%T Exact Solutions of Nonlinear Partial Differential Equations by the Method of Group Foliation Reduction
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a65/
%G en
%F SIGMA_2011_7_a65
Stephen C. Anco; Sajid Ali; Thomas Wolf. Exact Solutions of Nonlinear Partial Differential Equations by the Method of Group Foliation Reduction. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a65/

[1] Ovsiannikov L. V., Group analysis of differential equations, Academic Press, Inc., New York – London, 1982 | MR | Zbl

[2] Olver P. J., Applications of Lie groups to differential equations, Graduate Texts in Mathematics, 107, 2nd ed., Springer-Verlag, New York, 1993 | MR | Zbl

[3] Bluman G., Anco S. C., Symmetry and integration methods for differential equations, Applied Mathematical Sciences, 154, Springer-Verlag, New York, 2002 | MR | Zbl

[4] Anco S. C., Liu S., “Exact solutions of semilinear radial wave equations in $n$ dimensions”, J. Math. Anal. Appl., 297 (2004), 317–342, arXiv: math-ph/0309049 | DOI | MR | Zbl

[5] Anco S. C., Ali S., Wolf T., “Symmetry analysis and exact solutions of semilinear heat flow in multi-dimensions”, J. Math. Anal. Appl., 379 (2011), 748–763, arXiv: 1011.4633 | DOI | MR | Zbl

[6] Dorodnitsyn V. A., “On invariant solutions of the equation of nonlinear heat conduction with a source”, USSR Comp. Math. Math. Phys., 22 (1982), 115–122 | DOI | MR | Zbl

[7] Galaktionov V. A., Svirshchevskii S. R., Exact solutions and invariant subspaces of nonlinear partial differential equations in mechanics and physics, Chapman Hall/CRC, Boca Raton, 2007 | MR | Zbl

[8] Wolf T., “Applications of CRACK in the classification of integrable systems”, Superintegrability in Classical and Quantum Systems, CRM Proc. Lecture Notes, 37, Amer. Math. Soc., Providence, RI, 2004, 283–300 http://lie.math.brocku.ca/crack/demo/ | MR | Zbl

[9] Clarkson P. A., Mansfield E. L., “Symmetry reductions and exact solutions of a class of nonlinear heat equations”, Phys. D, 70 (1993), 250–288, arXiv: solv-int/9306002 | DOI | MR

[10] Arrigo D. J., Hill J. M., Broadbridge P., “Nonclassical symmetry reductions of the linear diffusion equation with a nonlinear source”, IMA J. Appl. Math., 52 (1994), 1–24 | DOI | MR | Zbl

[11] Vijayakumar K., “On the integrability and exact solutions of the nonlinear diffusion equation with a nonlinear source”, J. Austral. Math. Soc. Ser. B, 39 (1998), 513–517 | DOI | MR

[12] Qu C., Zhang S.-L., “Group foliation method and functional separation of variables to nonlinear diffusion equations”, Chinese Phys. Lett., 22 (2005), 1563–1566 | DOI

[13] Golovin S. V., “Applications of the differential invariants of infinite dimensional groups in hydrodynamics”, Commun. Nonlinear Sci. Numer. Simul., 9 (2004), 35–51 | DOI | MR | Zbl

[14] Nutku Y., Sheftel M. B., “Differential invariants and group foliation for the complex Monge–Ampère equation”, J. Phys. A: Math. Gen., 34 (2001), 137–156 | DOI | MR | Zbl

[15] Sheftel M. B., “Method of group foliation and non-invariant solutions of partial differential equations. Example: the heavenly equation”, Eur. Phys. J. B Condens. Matter Phys., 29 (2002), 203–206 | DOI | MR