Structure Constants of Diagonal Reduction Algebras of $\mathfrak{gl}$ Type
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe, in terms of generators and relations, the reduction algebra, related to the diagonal embedding of the Lie algebra $\mathfrak{gl}_n$ into $\mathfrak{gl}_n\oplus\mathfrak{gl}_n$. Its representation theory is related to the theory of decompositions of tensor products of $\mathfrak{gl}$-modules.
Keywords: reduction algebra; extremal projector; Zhelobenko operators.
@article{SIGMA_2011_7_a63,
     author = {Sergei Khoroshkin and Oleg Ogievetsky},
     title = {Structure {Constants} of {Diagonal} {Reduction} {Algebras} of $\mathfrak{gl}$ {Type}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a63/}
}
TY  - JOUR
AU  - Sergei Khoroshkin
AU  - Oleg Ogievetsky
TI  - Structure Constants of Diagonal Reduction Algebras of $\mathfrak{gl}$ Type
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a63/
LA  - en
ID  - SIGMA_2011_7_a63
ER  - 
%0 Journal Article
%A Sergei Khoroshkin
%A Oleg Ogievetsky
%T Structure Constants of Diagonal Reduction Algebras of $\mathfrak{gl}$ Type
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a63/
%G en
%F SIGMA_2011_7_a63
Sergei Khoroshkin; Oleg Ogievetsky. Structure Constants of Diagonal Reduction Algebras of $\mathfrak{gl}$ Type. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a63/

[1] Arnaudon D., Buffenoir E., Ragoucy E., Roche Ph., “Universal solutions of quantum dynamical Yang–Baxter equations”, Lett. Math. Phys., 44 (1998), 201–214, arXiv: q-alg/9712037 | DOI | MR | Zbl

[2] Theoret. and Math. Phys., 15 (1973), 392–401 | DOI | MR

[3] Math. Notes, 26 (1979), 499–504 | DOI | MR | Zbl

[4] Cherednik I., “Quantum groups as hidden symmetries of classical representation theory”, Differential Geometric Methods in Theoretical Physics (Chester, 1988), eds. A. I. Solomon, World Sci. Publ., Teaneck, NJ, 1989, 47–54 | MR

[5] Theoret. and Math. Phys., 139 (2004), 582–597 | DOI | MR | Zbl

[6] Khoroshkin S., Ogievetsky O., “Mickelsson algebras and Zhelobenko operators”, J. Algebra, 319 (2008), 2113–2165, arXiv: math.QA/0606259 | DOI | MR | Zbl

[7] Funct. Anal. Appl., 44 (2010), 182–198, arXiv: 0912.4055 | DOI | MR

[8] Lepowsky J., McCollum G. W., “On the determination of irreducible modules by restriction to a subalgebra”, Trans. Amer. Math. Soc., 176 (1973), 45–47 | DOI | MR

[9] Soviet Math. Dokl., 36 (1988), 569–573 | MR

[10] Zhelobenko D., Representations of reductive Lie algebras, Nauka, Moscow, 1994 (in Russian) | MR | Zbl