@article{SIGMA_2011_7_a62,
author = {Serge Preston},
title = {Balance {Systems} and the {Variational} {Bicomplex}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a62/}
}
Serge Preston. Balance Systems and the Variational Bicomplex. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a62/
[1] Anderson I., The variational bicomplex, Preprint, Utah State University, 2003
[2] Bocharov A. V., Chetverikov V. N., Duzhin S. V., Khor'kova N. G., Krasil'shchik I. S., Samokhin A. V., Torkhov Yu. N., Verbovetsky A. M., Vinogradov A. M., Symmetries and conservation laws for differential equations of mathematical physics, American Mathematical Society, Providence, RI, 1999 | MR
[3] Campos C., de Leon M., Diego D., Vankerschaver J., Unambiguous formalism for higher-order Lagrangian field theories, arXiv: 0906.0389
[4] Fatibene L., Francaviglia M., Natural and gauge natural formalism for classical field theories. A geometric perspective including spinors and gauge theories, Kluwer Academic Publishers, Dordrecht, 2003 | MR | Zbl
[5] Godunov S. K., “An interesting class of quasilinear systems”, Soviet Math. Dokl., 2 (1961), 947–948 | MR
[6] Godunov S. K., Gordienko V. M., “The simplest galilean-invariant and thermodynamically consistant conservative laws”, J. Appl. Mech. Tech. Phys., 43 (2002), 1–12 | DOI | MR | Zbl
[7] Godunov S. K., “Structure of thermodynamically compatible systems”, Appendix to: Godunov S. K., Romenskii E. I., Elements of continuum mechanics and conservation laws, Kluwer Academic/Plenum Publishers, New York, 2003 | Zbl
[8] Kolář I., Michor P., Slovák J., Natural operations in differential geometry, Springer-Verlag, Berlin, 1993 | MR
[9] Krupka D., “Global variational theory in fibred spaces”, Handbook of Global Analysis, eds. D. Krupka and D. Saunders, Elsevier Sci. B.V., Amsterdam, 2008, 773–836 | DOI | MR
[10] Marsden J. E., Hughes T. J. R., Mathematical foundations of elasticity, Dover Publications, Inc., New York, 1994 | MR
[11] Müller I., Ruggeri T., Rational extended thermodynamics, Springer Tracts in Natural Philosophy, 37, 2nd ed., Springer-Verlag, New York, 1998 | MR
[12] Olver P. J., Applications of Lie groups to differential equations, Graduate Texts in Mathematics, 107, 2nd ed., Springer-Verlag, New York, 1993 | MR | Zbl
[13] Preston S., “Variational theory of balance systems”, Proceedings of Conf. “Differential Geometry and its Applications in Honour of Leonhard Euler” (August 27–31, 2007, Olomouc), eds. O. Kowalski, D. Krupka, O. Krupková and J. Slovák, World Sci. Publ., Hackensack, NJ, 2008, 675–688, arXiv: 0806.4636 | MR | Zbl
[14] Preston S., “Geometrical theory of balance systems”, Int. J. Geom. Methods Mod. Phys., 7 (2010), 745–795 | DOI | MR | Zbl
[15] Preston S., “Forms of Lepage type and the balance systems”, Differential Geom. Appl. (to appear) | DOI
[16] Saunders D., The geometry of jet bundles, London Mathematical Society Lecture Note Series, 142, Cambridge University Press, Cambridge, 1989 | DOI | MR | Zbl
[17] Senashov S. I., Vinogradov A. M., “Symmetries and conservation laws of 2-dimensional ideal plasticity”, Proc. Edinburgh Math. Soc. (2), 31 (1988), 415–439 | DOI | MR | Zbl
[18] Serre D., Systems of conservation laws, v. I, Hyperbolicity, entropies, shock waves, Cambridge University Press, Cambridge, 1999 | DOI | MR | Zbl
[19] Sieniutycz S., Conservation laws in variational thermohydrodynamics, Mathematics and its Applications, 279, Kluwer Academic Publishers Group, Dordrecht, 1994 | MR | Zbl
[20] Sieniutycz S., Farkas S., Variational and extremum principles in macroscopic systems, Elsevier, Amsterdam, 2005