Soliton Taxonomy for a Modification of the Lattice Boussinesq Equation
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Integrable multi-component lattice equations of the Boussinesq family have been known for some time. Recently some new equations of this type were found using the Consistency-Around-the-Cube approach. Here we investigate one of these models, B-2, and in particular the consequences of a nonzero deformation parameter $b_0>0$, which allows special kinds of solitons in the parameter range $-b_0/3$.
Keywords: lattice Boussinesq equation; integrable lattice equations; solitons; kinks.
@article{SIGMA_2011_7_a60,
     author = {Jarmo Hietarinta and Da-jun Zhang},
     title = {Soliton {Taxonomy} for a {Modification} of the {Lattice} {Boussinesq} {Equation}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a60/}
}
TY  - JOUR
AU  - Jarmo Hietarinta
AU  - Da-jun Zhang
TI  - Soliton Taxonomy for a Modification of the Lattice Boussinesq Equation
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a60/
LA  - en
ID  - SIGMA_2011_7_a60
ER  - 
%0 Journal Article
%A Jarmo Hietarinta
%A Da-jun Zhang
%T Soliton Taxonomy for a Modification of the Lattice Boussinesq Equation
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a60/
%G en
%F SIGMA_2011_7_a60
Jarmo Hietarinta; Da-jun Zhang. Soliton Taxonomy for a Modification of the Lattice Boussinesq Equation. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a60/

[1] Tongas A., Nijhoff F., “The Boussinesq integrable system: compatible lattice and continuum structures”, Glasg. Math. J., 47:A (2005), 205–219, arXiv: nlin.SI/0402053 | DOI | MR

[2] Bobenko A. I., Suris Y. B., “Integrable systems on quad-graphs”, Int. Math. Res. Not., 2002:11 (2002), 573–611, arXiv: nlin.SI/0110004 | DOI | MR | Zbl

[3] Nijhoff F. W., Walker A. J., “The discrete and continuous Painlevé VI hierarchy and the Garnier systems”, Glasg. Math. J., 43:A (2001), 109–123, arXiv: nlin.SI/0001054 | DOI | MR

[4] Nijhoff F. W., “Lax pair for the Adler (lattice Krichever–Novikov) system”, Phys. Lett. A, 297 (2002), 49–58, arXiv: nlin.SI/0110027 | DOI | MR | Zbl

[5] Hietarinta J., “Boussinesq-like multi-component lattice equations and multi-dimensional consistency,”, J. Phys. A: Math. Theor., 44 (2011), 165204, 22 pp., arXiv: 1011.1978 | DOI | MR | Zbl

[6] Hietarinta J., Zhang D. J., “Multisoliton solutions to the lattice Boussinesq equation”, J. Math. Phys., 51 (2010), 033505, 12 pp., arXiv: 0906.3955 | DOI | MR

[7] Atkinson J., Hietarinta J., Nijhoff F., “Seed and soliton solutions of Adler's lattice equation”, J. Phys. A: Math. Theor., 40 (2007), F1–F8, arXiv: nlin.SI/0609044 | DOI | Zbl

[8] Freeman N. C., Nimmo J. J. C., “Soliton solutions of the Korteweg–de Vries and Kadomtsev–Petviashvili equations: the Wronskian technique”, Phys. Lett. A, 95 (1983), 1–3 | DOI | MR