@article{SIGMA_2011_7_a6,
author = {Hermann Boos},
title = {Fermionic {Basis} in {Conformal} {Field} {Theory} and {Thermodynamic} {Bethe} {Ansatz} for {Excited} {States}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a6/}
}
Hermann Boos. Fermionic Basis in Conformal Field Theory and Thermodynamic Bethe Ansatz for Excited States. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a6/
[1] Boos H., Jimbo M., Miwa T., Smirnov F., Takeyama Y., “Hidden Grassmann structure in the XXZ model”, Comm. Math. Phys., 272 (2007), 263–281, arXiv: hep-th/0606280 | DOI | MR | Zbl
[2] Boos H., Jimbo M., Miwa T., Smirnov F., Takeyama Y., “Hidden Grassmann structure in the XXZ model. II. Creation operators”, Comm. Math. Phys., 286 (2009), 875–932, arXiv: 0801.1176 | DOI | MR | Zbl
[3] Jimbo M., Miwa T., Smirnov F., “Hidden Grassmann structure in the XXZ model. III. Introducing Matsubara direction”, J. Phys. A: Math. Theor., 42 (2009), 304018, 31 pp. | DOI | MR | Zbl
[4] Boos H., Jimbo M., Miwa T., Smirnov F., “Hidden Grassmann structure in the XXZ model. IV. CFT limit”, Comm. Math. Phys., 299 (2010), 825–866, arXiv: 0911.3731 | DOI | MR | Zbl
[5] Destri C., de Vega H. J., “Unified approach of thermodynamic Bethe ansatz and finite size corrections for lattice models and field theories”, Nuclear Phys. B, 438 (1995), 413–454, arXiv: hep-th/9407117 | DOI | MR | Zbl
[6] Bazhanov V., Lukyanov S., Zamolodchikov A., “Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe ansatz”, Comm. Math. Phys., 177 (1996), 381–398, arXiv: hep-th/9412229 | DOI | MR | Zbl
[7] Bazhanov V., Lukyanov S., Zamolodchikov A., “Integrable structure of conformal field theory II. $Q$-operator and DDV equation”, Comm. Math. Phys., 190 (1997), 247–278, arXiv: hep-th/9604044 | DOI | MR | Zbl
[8] Bazhanov V., Lukyanov S., Zamolodchikov A., “Integrable structure of conformal field theory. III. The Yang–Baxter relation”, Comm. Math. Phys., 200 (1999), 297–324, arXiv: hep-th/9805008 | DOI | MR | Zbl
[9] Baxter R. J., Exactly solved models in statistical mechanics, Academic Press, Inc., London, 1982 | MR | Zbl
[10] Zamolodchikov A. B., “Higher order integrals of motion in two-dimensional models of the field theory with a broken conformal symmetry”, JETP Lett., 46 (1987), 160–164 | MR
[11] Boos H., Jimbo M., Miwa T., Smirnov F., “Completeness of a fermionic basis in the homogeneous XXZ model”, J. Math. Phys., 50 (2009), 095206, 10 pp., arXiv: 0903.0115 | DOI | MR | Zbl
[12] Suzuki M., “Transfer-matrix method and Monte Carlo simulation in quantum spin systems”, Phys. Rev. B, 31 (1985), 2957–2965 | DOI
[13] Boos H., Göhmann F., “On the physical part of the factorized correlation functions of the XXZ chain”, J. Phys. A: Math. Theor., 42 (2009), 315001, 27 pp., arXiv: 0903.5043 | DOI | MR | Zbl
[14] Jimbo M., Miwa T., Smirnov F., On one-point functions of descendants in sine-Gordon model, arXiv: 0912.0934 | MR
[15] Jimbo M., Miwa T., Smirnov F., Hidden Grassmann structure in the XXZ model. V. Sine-Gordon model, arXiv: 1007.0556 | MR
[16] Dotsenko V. S., Fateev V. A., “Conformal algebra and multipoint correlator functions in 2D statistical models”, Nuclear Phys. B, 240 (1984), 312–348 | DOI | MR
[17] Gaudin M., “Thermodynamics of the Heisenberg–Ising ring for $\Delta>{\sim}1$”, Phys. Rev. Lett., 26 (1971), 1301–1304 ; Takahashi M., “One-dimensional Heisenberg model at finite temperature”, Prog. Theor. Phys., 46 (1971), 401–415 ; Takahashi M., Suzuki M., “One-dimensional anisotropic Heisenberg model at finite temperatures”, Prog. Theor. Phys., 46 (1972), 2187–2209 ; Woynarovich F., “Excitation spectrum of the spin-1/2 Heisenberg chain and conformal invariance”, Phys. Rev. Lett., 59 (1987), 259–261 ; de Vega H. J., Woynarovich F., “Method for calculating finite size corrections in Bethe ansatz systems: Heisenberg chain and six-vertex model”, Nuclear Phys. B, 251 (1985), 439–456 | DOI | DOI | DOI | DOI | DOI | MR
[18] Bazhanov V., Lukyanov S., Zamolodchikov A., “Higher-level eigenvalues of $Q$-operators and Schrödinger equation”, Adv. Theor. Math. Phys., 7 (2003), 711–725, arXiv: hep-th/0307108 | MR | Zbl
[19] Klümper A., Batchelor M., Pearce P. A., “Central charges of the 6- and 19-vertex models with twisted boundary conditions”, J. Phys. A: Math. Gen., 24 (1991), 3111–3133 | DOI | MR | Zbl
[20] Klümper A., “Free energy and correlation length of quantum chains related to restricted solid-on-solid lattice models”, Ann. Physik (8), 1 (1992), 540–553 | DOI | MR