The BGG Complex on Projective Space
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give a complete construction of the Bernstein–Gelfand–Gelfand complex on real or complex projective space using minimal ingredients.
Keywords: differential complex; BGG complex; projective space; Lie algebra cohomology; parabolic geometry.
@article{SIGMA_2011_7_a59,
     author = {Michael G. Eastwood and A. Rod Gover},
     title = {The {BGG} {Complex} on {Projective} {Space}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a59/}
}
TY  - JOUR
AU  - Michael G. Eastwood
AU  - A. Rod Gover
TI  - The BGG Complex on Projective Space
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a59/
LA  - en
ID  - SIGMA_2011_7_a59
ER  - 
%0 Journal Article
%A Michael G. Eastwood
%A A. Rod Gover
%T The BGG Complex on Projective Space
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a59/
%G en
%F SIGMA_2011_7_a59
Michael G. Eastwood; A. Rod Gover. The BGG Complex on Projective Space. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a59/

[1] Baston R. J., “Almost Hermitian symmetric manifolds. II. Differential invariants”, Duke Math. J., 63 (1991), 113–138 | DOI | MR | Zbl

[2] Baston R. J., Eastwood M. G., The Penrose transform. Its interaction with representation theory, Oxford University Press, New York, 1989 | MR | Zbl

[3] Calderbank D. M. J., Diemer T., “Differential invariants and curved Bernstein–Gelfand–Gelfand sequences”, J. Reine Angew. Math., 537 (2001), 67–103, arXiv: math.DG/0001158 | DOI | MR | Zbl

[4] Calderbank D. M. J., Diemer T., Souček V., “Ricci-corrected derivatives and invariant differential operators”, Differential Geom. Appl., 23 (2005), 149–175, arXiv: math.DG/0310311 | DOI | MR | Zbl

[5] Čap A., Slovák J., Parabolic geometries. I. Background and general theory, Mathematical Surveys and Monographs, 154, American Mathematical Society, Providence, RI, 2009 | MR | Zbl

[6] Čap A., Slovák J., Souček V., “Bernstein–Gelfand–Gelfand sequences”, Ann. of Math. (2), 154 (2001), 97–113, arXiv: math.DG/0001164 | DOI | MR | Zbl

[7] CartanÉ., Schouten J. A., “On the geometry of the group-manifold of simple and semi-simple groups”, Nederl. Akad. Wetensch. Proc. Ser. A, 29 (1926), 803–815

[8] Chevalley C. C., Eilenberg S., “Cohomology theory of Lie groups and Lie algebras”, Trans. Amer. Math. Soc., 63 (1948), 85–124 | DOI | MR | Zbl

[9] Chow T. Y., “You could have invented spectral sequences”, Notices Amer. Math. Soc., 53 (2006), 15–19 | MR | Zbl

[10] Eastwood M. G., “A duality for homogeneous bundles on twistor space”, J. London Math. Soc. (2), 31 (1985), 349–356 | DOI | MR | Zbl

[11] Eastwood M. G., “Variations on the de Rham complex”, Notices Amer. Math. Soc., 46 (1999), 1368–1376 | MR | Zbl

[12] Eastwood M. G., “Notes on projective differential geometry”, Symmetries and Overdetermined Systems of Partial Differential Equations, IMA Vol. Math. Appl., 144, Springer, New York, 2008, 41–60 | DOI | MR | Zbl

[13] Eastwood M. G., Tod K. P., “Edth – a differential operator on the sphere”, Math. Proc. Cambridge Philos. Soc., 92 (1982), 317–330 | DOI | MR | Zbl

[14] Fulton W., Harris J., Representation theory, Graduate Texts in Mathematics, 129, Springer-Verlag, New York, 1991 | MR | Zbl

[15] Gover A. R., “Conformally invariant operators of standard type”, Quart. J. Math. Oxford Ser. (2), 40 (1989), 197–207 | DOI | MR | Zbl

[16] Kobayashi S., Nomizu K., Foundations of differential geometry, v. II, Wiley Interscience, New York – London – Sydney, 1969 | MR | Zbl

[17] Kostant B., “Lie algebra cohomology and the generalized Borel–Weil theorem”, Ann. of Math. (2), 74 (1961), 329–387 | DOI | MR | Zbl

[18] Lepowsky J., “A generalization of the Bernstein–Gelfand–Gelfand resolution”, J. Algebra, 49 (1977), 496–511 | DOI | MR | Zbl

[19] Olver P., Differential hyperforms I, http://www.math.umn.edu/~olver/a_/hyper.pdf

[20] Penrose R., Rindler W., Spinors and space-time, v. 1, Cambridge Monographs on Mathematical Physics, Two-spinor calculus and relativistic fields, Cambridge University Press, Cambridge, 1984 | DOI | MR | Zbl

[21] Rice J. W., Private communication, January 1985

[22] Schouten J. A., Ricci-calculus. An introduction to tensor analysis and its geometrical applications, Springer-Verlag, Berlin, 1954 | MR | Zbl

[23] Sternberg S., Lie algebras, http://www.math.harvard.edu/~shlomo/docs/ lie_algebras.pdf

[24] Vogan D. A., Representations of real reductive Lie groups, Progress in Mathematics, 15, Birkhäuser, Boston, Mass., 1981 | MR | Zbl

[25] Woodhouse N. M. J., Geometric quantisation, 2nd ed., Oxford University Press, New York, 1992 | MR | Zbl