@article{SIGMA_2011_7_a59,
author = {Michael G. Eastwood and A. Rod Gover},
title = {The {BGG} {Complex} on {Projective} {Space}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a59/}
}
Michael G. Eastwood; A. Rod Gover. The BGG Complex on Projective Space. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a59/
[1] Baston R. J., “Almost Hermitian symmetric manifolds. II. Differential invariants”, Duke Math. J., 63 (1991), 113–138 | DOI | MR | Zbl
[2] Baston R. J., Eastwood M. G., The Penrose transform. Its interaction with representation theory, Oxford University Press, New York, 1989 | MR | Zbl
[3] Calderbank D. M. J., Diemer T., “Differential invariants and curved Bernstein–Gelfand–Gelfand sequences”, J. Reine Angew. Math., 537 (2001), 67–103, arXiv: math.DG/0001158 | DOI | MR | Zbl
[4] Calderbank D. M. J., Diemer T., Souček V., “Ricci-corrected derivatives and invariant differential operators”, Differential Geom. Appl., 23 (2005), 149–175, arXiv: math.DG/0310311 | DOI | MR | Zbl
[5] Čap A., Slovák J., Parabolic geometries. I. Background and general theory, Mathematical Surveys and Monographs, 154, American Mathematical Society, Providence, RI, 2009 | MR | Zbl
[6] Čap A., Slovák J., Souček V., “Bernstein–Gelfand–Gelfand sequences”, Ann. of Math. (2), 154 (2001), 97–113, arXiv: math.DG/0001164 | DOI | MR | Zbl
[7] CartanÉ., Schouten J. A., “On the geometry of the group-manifold of simple and semi-simple groups”, Nederl. Akad. Wetensch. Proc. Ser. A, 29 (1926), 803–815
[8] Chevalley C. C., Eilenberg S., “Cohomology theory of Lie groups and Lie algebras”, Trans. Amer. Math. Soc., 63 (1948), 85–124 | DOI | MR | Zbl
[9] Chow T. Y., “You could have invented spectral sequences”, Notices Amer. Math. Soc., 53 (2006), 15–19 | MR | Zbl
[10] Eastwood M. G., “A duality for homogeneous bundles on twistor space”, J. London Math. Soc. (2), 31 (1985), 349–356 | DOI | MR | Zbl
[11] Eastwood M. G., “Variations on the de Rham complex”, Notices Amer. Math. Soc., 46 (1999), 1368–1376 | MR | Zbl
[12] Eastwood M. G., “Notes on projective differential geometry”, Symmetries and Overdetermined Systems of Partial Differential Equations, IMA Vol. Math. Appl., 144, Springer, New York, 2008, 41–60 | DOI | MR | Zbl
[13] Eastwood M. G., Tod K. P., “Edth – a differential operator on the sphere”, Math. Proc. Cambridge Philos. Soc., 92 (1982), 317–330 | DOI | MR | Zbl
[14] Fulton W., Harris J., Representation theory, Graduate Texts in Mathematics, 129, Springer-Verlag, New York, 1991 | MR | Zbl
[15] Gover A. R., “Conformally invariant operators of standard type”, Quart. J. Math. Oxford Ser. (2), 40 (1989), 197–207 | DOI | MR | Zbl
[16] Kobayashi S., Nomizu K., Foundations of differential geometry, v. II, Wiley Interscience, New York – London – Sydney, 1969 | MR | Zbl
[17] Kostant B., “Lie algebra cohomology and the generalized Borel–Weil theorem”, Ann. of Math. (2), 74 (1961), 329–387 | DOI | MR | Zbl
[18] Lepowsky J., “A generalization of the Bernstein–Gelfand–Gelfand resolution”, J. Algebra, 49 (1977), 496–511 | DOI | MR | Zbl
[19] Olver P., Differential hyperforms I, http://www.math.umn.edu/~olver/a_/hyper.pdf
[20] Penrose R., Rindler W., Spinors and space-time, v. 1, Cambridge Monographs on Mathematical Physics, Two-spinor calculus and relativistic fields, Cambridge University Press, Cambridge, 1984 | DOI | MR | Zbl
[21] Rice J. W., Private communication, January 1985
[22] Schouten J. A., Ricci-calculus. An introduction to tensor analysis and its geometrical applications, Springer-Verlag, Berlin, 1954 | MR | Zbl
[23] Sternberg S., Lie algebras, http://www.math.harvard.edu/~shlomo/docs/ lie_algebras.pdf
[24] Vogan D. A., Representations of real reductive Lie groups, Progress in Mathematics, 15, Birkhäuser, Boston, Mass., 1981 | MR | Zbl
[25] Woodhouse N. M. J., Geometric quantisation, 2nd ed., Oxford University Press, New York, 1992 | MR | Zbl