@article{SIGMA_2011_7_a58,
author = {Mikio Murata},
title = {Exact {Solutions} with {Two} {Parameters} for an {Ultradiscrete} {Painlev\'e} {Equation} of {Type} $A_6^{(1)}$},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a58/}
}
TY - JOUR
AU - Mikio Murata
TI - Exact Solutions with Two Parameters for an Ultradiscrete Painlevé Equation of Type $A_6^{(1)}$
JO - Symmetry, integrability and geometry: methods and applications
PY - 2011
VL - 7
UR - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a58/
LA - en
ID - SIGMA_2011_7_a58
ER -
Mikio Murata. Exact Solutions with Two Parameters for an Ultradiscrete Painlevé Equation of Type $A_6^{(1)}$. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a58/
[1] Doyon B., “Two-point correlation functions of scaling fields in the Dirac theory on the Poincaré disk”, Nuclear Phys. B, 675 (2003), 607–630, arXiv: hep-th/0304190 | DOI | MR | Zbl
[2] Dubrovin B., Mazzocco M., “Monodromy of certain Painlevé-VI transcendents and reflection groups”, Invent. Math., 141 (2000), 55–147, arXiv: math.AG/9806056 | DOI | MR | Zbl
[3] Grammaticos B., Ohta Y., Ramani A., Takahashi D., Tamizhmani K. M., “Cellular automata and ultra-discrete Painlevé equations”, Phys. Lett. A, 226 (1997), 53–58, arXiv: solv-int/9603003 | DOI | MR
[4] Grammaticos B., Ramani A., Papageorgiou V. G., “Do integrable mappings have the Painlevé property?”, Phys. Rev. Lett., 67 (1991), 1825–1828 | DOI | MR | Zbl
[5] Hamamoto T., Kajiwara K., Witte N. S., “Hypergeometric solutions to the $q$-Painlevé equation of type $(A_1+A'_1)^{(1)}$”, Int. Math. Res. Not., 2006 (2006), Art. ID 84619, 26 pp., arXiv: nlin.SI/0607065 | DOI | MR
[6] Isojima S., Konno T., Mimura N., Murata M., Satsuma J., “Ultradiscrete Painlevé II equation and a special function solution”, J. Phys. A: Math. Theor., 44 (2011), 175201, 10 pp. | DOI | MR | Zbl
[7] Jimbo M., “Monodromy problem and the boundary condition for some Painlevé equations”, Publ. Res. Inst. Math. Sci., 18 (1982), 1137–1161 | DOI | MR | Zbl
[8] Joshi N., Lafortune S., “How to detect integrability in cellular automata”, J. Phys. A: Math. Gen., 38 (2005), L499–L504 | DOI | MR | Zbl
[9] Joshi N., Lafortune S., “Integrable ultra-discrete equations and singularity analysis”, Nonlinearity, 19 (2006), 1295–1312 | DOI | MR | Zbl
[10] Joshi N., Nijhoff F. W., Ormerod C., “Lax pairs for ultra-discrete Painlevé cellular automata”, J. Phys. A: Math. Gen., 37 (2004), L559–L565 | DOI | MR | Zbl
[11] Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., “Construction of hypergeometric solutions to the $q$-Painlevé equations”, Int. Math. Res. Not., 2005:24 (2005), 1441–1463, arXiv: nlin.SI/0501051 | DOI | MR
[12] Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., “Hypergeometric solutions to the $q$-Painlevé equations”, Int. Math. Res. Not., 2004:47 (2004), 2497–2521, arXiv: nlin.SI/0403036 | DOI | MR | Zbl
[13] Kajiwara K., Ohta Y., Satsuma J., Grammaticos B., Ramani A., “Casorati determinant solutions for the discrete Painlevé-II equation”, J. Phys. A: Math. Gen., 27 (1994), 915–922, arXiv: solv-int/9310002 | DOI | MR | Zbl
[14] Mano T., “Asymptotic behaviour around a boundary point of the $q$-Painlevé VI equation and its connection problem”, Nonlinearity, 23 (2010), 1585–1608 | DOI | MR | Zbl
[15] Mimura N., Isojima S., Murata M., Satsuma J., “Singularity confinement test for ultradiscrete equations with parity variables”, J. Phys. A: Math. Theor., 42 (2009), 315206, 7 pp. | DOI | MR | Zbl
[16] Murata M., Sakai H., Yoneda J., “Riccati solutions of discrete Painlevé equations with Weyl group symmetry of type $E_8^{(1)}$”, J. Math. Phys., 44 (2003), 1396–1414, arXiv: nlin.SI/0210040 | DOI | MR | Zbl
[17] Nishioka K., “A note on the transcendency of Painlevé's first transcendent”, Nagoya Math. J., 109 (1988), 63–67 | MR | Zbl
[18] Nishioka S., “Irreducibility of $q$-Painlevé equation of type $A_6^{(1)}$ in the sense of order”, J. Difference Equ. Appl. (to appear) | DOI
[19] Nishioka S., “Transcendence of solutions of $q$-Painlevé equation of type $A_6^{(1)}$”, Aequat. Math., 81 (2011), 121–134 | DOI | MR | Zbl
[20] Noumi M., Okamoto K., “Irreducibility of the second and the fourth Painlevé equations”, Funkcial. Ekvac., 40 (1997), 139–163 | MR | Zbl
[21] Ohyama Y., “Analytic solutions to the sixth $q$-Painlevé equation around the origin”, Expansion of Integrable Systems, RIMS Kôkyûroku Bessatsu, B13, Res. Inst. Math. Sci. (RIMS), Kyoto, 2009, 45–52 | MR
[22] Ormerod C. M., “Hypergeometric solutions to an ultradiscrete Painlevé equation”, J. Nonlinear Math. Phys., 17 (2010), 87–102, arXiv: nlin.SI/0610048 | DOI | MR | Zbl
[23] Ramani A., Grammaticos B., “Discrete Painlevé equations: coalescences, limits and degeneracies”, Phys. A, 228 (1996), 160–171, arXiv: solv-int/9510011 | DOI | MR | Zbl
[24] Ramani A., Grammaticos B., Hietarinta J., “Discrete versions of the Painlevé equations”, Phys. Rev. Lett., 67 (1991), 1829–1832 | DOI | MR | Zbl
[25] Ramani A., Grammaticos B., Tamizhmani T., Tamizhmani K. M., “Special function solutions of the discrete Painlevé equations”, Comput. Math. Appl., 42 (2001), 603–614 | DOI | MR | Zbl
[26] Ramani A., Takahashi D., Grammaticos B., Ohta Y., “The ultimate discretisation of the Painlevé equations”, Phys. D, 114 (1998), 185–196 | DOI | MR | Zbl
[27] Sakai H., “Problem: discrete Painlevé equations and their Lax forms”, Algebraic, Analytic and Geometric Aspects of Complex Differential Equations and Their Deformations. Painlevé Hierarchies, RIMS Kôkyûroku Bessatsu, B2, Res. Inst. Math. Sci. (RIMS), Kyoto, 2007, 195–208 | MR
[28] Sakai H., “Rational surfaces associated with affine root systems and geometry of the Painlevé equations”, Comm. Math. Phys., 220 (2001), 165–229 | DOI | MR | Zbl
[29] Takahashi D., Tokihiro T., Grammaticos B., Ohta Y., Ramani A., “Constructing solutions to the ultradiscrete Painlevé equations”, J. Phys. A: Math. Gen., 30 (1997), 7953–7966 | DOI | MR | Zbl
[30] Tokihiro T., Takahashi D., Matsukidaira J., Satsuma J., “From soliton equations to integrable cellular automata through a limiting procedure”, Phys. Rev. Lett., 76 (1996), 3247–3250 | DOI
[31] Umemura H., “On the irreducibility of the first differential equation of Painlevé”, Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata, Kinokuniya, Tokyo, 1988, 771–789 | MR