@article{SIGMA_2011_7_a56,
author = {Alberto Carignano and Lorenzo Fatibene and Raymond G. McLenaghan and Giovanni Rastelli},
title = {Symmetry {Operators} and {Separation} of {Variables} for {Dirac's} {Equation} on {Two-Dimensional} {Spin} {Manifolds}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a56/}
}
TY - JOUR AU - Alberto Carignano AU - Lorenzo Fatibene AU - Raymond G. McLenaghan AU - Giovanni Rastelli TI - Symmetry Operators and Separation of Variables for Dirac's Equation on Two-Dimensional Spin Manifolds JO - Symmetry, integrability and geometry: methods and applications PY - 2011 VL - 7 UR - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a56/ LA - en ID - SIGMA_2011_7_a56 ER -
%0 Journal Article %A Alberto Carignano %A Lorenzo Fatibene %A Raymond G. McLenaghan %A Giovanni Rastelli %T Symmetry Operators and Separation of Variables for Dirac's Equation on Two-Dimensional Spin Manifolds %J Symmetry, integrability and geometry: methods and applications %D 2011 %V 7 %U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a56/ %G en %F SIGMA_2011_7_a56
Alberto Carignano; Lorenzo Fatibene; Raymond G. McLenaghan; Giovanni Rastelli. Symmetry Operators and Separation of Variables for Dirac's Equation on Two-Dimensional Spin Manifolds. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a56/
[1] Benenti S., “Intrinsic characterization of the variable separation in the Hamilton–Jacobi equation”, J. Math. Phys., 38 (1997), 6578–6602 | DOI | MR | Zbl
[2] Brill D. R., Wheeler J. A., “Interaction of neutrinos and gravitational fields”, Rev. Mod. Phys., 29 (1957), 465–479 | DOI | MR | Zbl
[3] Bruce A. T., McLenaghan R. G., Smirnov R. G., “A geometrical approach to the problem of integrability of Hamiltonian systems by separation of variables”, J. Geom. Phys., 39 (2001), 301–322 | DOI | MR | Zbl
[4] Carter B., McLenaghan R. G., “Generalized total angular momentum for the Dirac operator in curved ] space-time”, Phys. Rev. D, 19 (1979), 1093–1097 | DOI | MR
[5] Cavaglià M., Fatibene L., Francaviglia M., “Two-dimensional dilaton gravity coupled to massless spinors”, Classical Quantum Gravity, 15 (1998), 3627–3643, arXiv: hep-th/9801155 | DOI | MR | Zbl
[6] Chandrasekhar S., The mathematical theory of black holes, International Series of Monographs on Physics, 69, Oxford Science Publications, New York; The Clarendon Press; Oxford University Press, 1983 | MR | Zbl
[7] Chanu C., Degiovanni L., McLenaghan R. G., “Geometrical clasification of Killing tensors on bidimensional flat manifolds”, J. Math. Phys., 47 (2006), 073506, 20 pp., arXiv: math.DG/0512324 | DOI | MR | Zbl
[8] Degiovanni L., Rastelli G., “Complex variables for separation of the Hamilton–Jacobi equation on real pseudo-Riemannian manifolds”, J. Math. Phys., 48 (2007), 073519, 23 pp., arXiv: nlin.SI/0610012 | DOI | MR | Zbl
[9] Fatibene L., Francaviglia M., “Natural and gauge natural formalism for classical field theories”, A geometric perspective including spinors and gauge theories, Kluwer Academic Publishers, Dordrecht, 2003 | MR | Zbl
[10] Fatibene L., Francaviglia M., “Deformations of spin structures and gravity”, Acta Phys. Polon. B, 29 (1998), 915–928 | MR | Zbl
[11] Fatibene L., Ferraris M., Francaviglia M., Godina M., “Gauge formalism for general relativity and fermionic matter”, Gen. Relativity Gravitation, 30 (1998), 1371–1389, arXiv: gr-qc/9609042 | DOI | MR | Zbl
[12] Fatibene L., Ferraris M., Francaviglia M., McLenaghan R. G., “Generalized symmetries in mechanics and field theories”, J. Math. Phys., 43 (2002), 3147–3161 | DOI | MR | Zbl
[13] Fatibene L., McLenaghan R. G., Smith S., “Separation of variables for the Dirac equation on low dimensional spaces”, Advances in General Relativity and Cosmology, Pitagora, Bologna, 2003, 109–127
[14] Fatibene L., McLenaghan R. G., Rastelli G., Smith S. N., “Symmetry operators for Dirac's equation on two-dimensional spin manifolds”, J. Math. Phys., 50 (2009), 053516, 12 pp., arXiv: 0812.2269 | DOI | MR | Zbl
[15] Fels M., Kamran N., “Nonfactorizable separable systems and higher-order symmetries of the Dirac operator”, Proc. Roy. Soc. London Ser. A, 428:1874 (1990), 229–249 | DOI | MR | Zbl
[16] Kalnins E. G., Separation of variables for Riemannian spaces of constant curvature, Pitman Monographs and Surveys in Pure and Applied Mathematics, 28, Longman Scientific Technical, Harlow; John Wiley Sons, Inc., New York, 1986 | MR | Zbl
[17] Kalnins E. G., Miller W. Jr., Williams G. C., “Matrix operator symmetries of the Dirac equation and separation of variables”, J. Math. Phys., 27 (1986), 1893–1900 | DOI | MR | Zbl
[18] Kalnins E. G., Miller W. Jr., Williams G. C., “Recent advances in the use of separation of variables methods in general relativity”, Philos. Trans. Roy. Soc. London Ser. A, 340:1658 (1992), 337–352 | DOI | MR | Zbl
[19] Kamran N., McLenaghan R. G., “Symmetry operators for neutrino ans Dirac fields on curved spacetime”, Phys. Rev. D, 30 (1984), 357–362 | DOI | MR | Zbl
[20] McLenaghan R. G., Rastelli G., “Separation of variables for systems of first-order partial differential equations and the Dirac equation in two-dimensional manifolds”, Symmetries and Overdetermined Systems of Partial Differential Equations, IMA Vol. Math. Appl., 144, eds. M. Eastwood and W. Miller Jr., Springer, New York, 2008, 471–496 | DOI | MR | Zbl
[21] McLenaghan R. G., Smith S. N., Walker D. M., “Symmetry operators for spin-1/2 relativistic wave equations on curved space-time”, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 456 (2000), 2629–2643 | DOI | MR | Zbl
[22] McLenaghan R. G., Spindel Ph., “Quantum numbers for Dirac spinor field on a curved space-time”, Phys. Rev. D, 20 (1979), 409–413 | DOI | MR
[23] Miller W. Jr., Symmetry and separation of variables, Encyclopedia of Mathematics and its Applications, 4, Addison-Wesley Publishing Co., Reading, Mass. – London – Amsterdam, 1977 | MR | Zbl
[24] Miller W. Jr., “Mechanism for variable separation in partial differential equations and their relationship to group theory”, Symmetries and Nonlinear Phenomena (Paipa, 1988), World Scientific, Singapore, 1988, 188–221 | MR
[25] Smith S. N., Symmetry operators and separation of variables for the Dirac equation on curved space-times, Ph.D. Thesis, University of Waterloo, 2002 | MR