@article{SIGMA_2011_7_a54,
author = {Yuri Bozhkov and Peter J. Olver},
title = {Pohozhaev and {Morawetz} {Identities} in {Elastostatics} and {Elastodynamics}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a54/}
}
Yuri Bozhkov; Peter J. Olver. Pohozhaev and Morawetz Identities in Elastostatics and Elastodynamics. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a54/
[1] Bourguignon J.-P., Ezin J.-P., “Scalar curvature functions in a conformal class of metrics and conformal transformations”, Trans. Amer. Math. Soc., 301 (1987), 723–736 | DOI | MR | Zbl
[2] Bozhkov Y., Freire I. L., “Special conformal groups of a Riemannian manifold and Lie point symmetries of the nonlinear Poisson equation”, J. Differential Equations, 249 (2010), 872–913, arXiv: 0911.5292 | DOI | MR | Zbl
[3] Bozhkov Y., Mitidieri E., “The Noether approach to Pohozhaev's identities”, Mediterr. J. Math., 4 (2007), 383–405 | DOI | MR | Zbl
[4] Bozhkov Y., Mitidieri E., “Lie symmetries and criticality of semilinear differential systems”, SIGMA, 3 (2007), 053, 17 pp., arXiv: math-ph/0703071 | DOI | MR | Zbl
[5] Bozhkov Y., Mitidieri E., “Conformal Killing vector fields and Rellich type identities on Riemannian manifolds. I”, Geometric Methods in PDE's, Lect. Notes Semin. Interdiscip. Mat., 7, Semin. Interdiscip. Mat. (S.I.M.), Potenza, 2008, 65–80 | MR | Zbl
[6] Bozhkov Y., Mitidieri E., “Conformal Killing vector fields and Rellich type identities on Riemannian manifolds. II”, Mediterr. J. Math. (to appear) , arXiv: 1012.2993 | DOI | MR
[7] Delanoë P., Robert F., “On the local Nirenberg problem for the $Q$-curvatures”, Pacific J. Math., 231 (2007), 293–304, arXiv: math.DG/0601732 | DOI | MR | Zbl
[8] Dolbeault J., Stańczy R., “Non-existence and uniqueness results for supercritical semilinear elliptic equationss”, Ann. Henri Poincaré, 10 (2010), 1311–1333, arXiv: 0901.0224 | DOI | MR | Zbl
[9] Druet O., “From one bubble to several bubbles: the low-dimensional case”, J. Differential Geom., 63 (2003), 399–473 | MR | Zbl
[10] Gurtin M. E., “The linear theory of elasticity”, Handbuch der Physik, VIa/2, eds. C. Truesdell, Springer-Verlag, New York, 1972, 1–295
[11] Knops R. J., Stuart C. A., “Quasiconvexity and uniqueness of equilibrium solutions in nonlinear elasticity”, Arch. Rational Mech. Anal., 86 (1984), 233–249 | DOI | MR | Zbl
[12] Mitidieri E., A Rellich identity and applications, Rapporti Interni No 25, Univ. Udine, 1990, 35 pp. | Zbl
[13] Mitidieri E., “A Rellich type identity and applications”, Comm. Partial Differential Equations, 18 (1993), 125–151 | DOI | MR | Zbl
[14] Morawetz C. S., Notes on time decay and scattering for some hyperbolic problems, Regional Conference Series in Applied Mathematics, 19, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1975 | MR | Zbl
[15] Muskhelishvili N. I., Some basic problems of the mathematical theory of elasticity. Fundamental equations, plane theory of elasticity, torsion and bending, Noordhoff, Groningen, 1953 | MR
[16] Noether E., “Invariante Variationsprobleme”, Nachr. Konig. Gesell. Wissen. Göttingen, Math.-Phys. Kl., 1918, 235–257 | Zbl
[17] Olver P. J., “Conservation laws in elasticity. I. General results”, Arch. Rat. Mech. Anal., 85 (1984), 111–129 | DOI | MR | Zbl
[18] Olver P. J., “Conservation laws in elasticity. II. Linear homogeneous isotropic elastostatics”, Arch. Rat. Mech. Anal., 85 (1984), 131–160 ; Errata: Arch. Rat. Mech. Anal., 102 (1988), 385–387 | DOI | MR | Zbl | DOI | MR | Zbl
[19] Olver P. J., Applications of Lie groups to differential equations, Graduate Texts in Mathematics, 107, 2nd ed., Springer-Verlag, New York, 1993 | MR | Zbl
[20] Soviet Math. Dokl., 6 (1965), 1408–1411 | MR
[21] Math. USSR Sbornik, 11 (1970), 171–188 | DOI | MR
[22] Pucci P., Serrin J., “A general variational identity”, Indiana Univ. Math. J., 35 (1986), 681–703 | DOI | MR | Zbl
[23] Reichel W., Uniqueness theorems for variational problems by the method of transformation groups, Lecture Notes in Mathematics, 1841, Springer-Verlag, Berlin, 2004 | MR | Zbl
[24] Rellich F., “Darstellung der Eigenverte von $\Delta u+\lambda u=0$ durch ein Randintegral”, Math. Z., 46 (1940), 635–636 | DOI | MR
[25] Rellich F., “Halbbeschränkte Differentialoperatoren höherer Ordnung”, Proceedings of the International Congress of Mathematicians (Amsterdam, 1954), v. III, Erven P. Noordhoff N. V., Groningen; North-Holland Publishing Co., Amsterdam, 1956, 243–250 | MR
[26] Schaaf R., “Uniqueness for semilinear elliptic problems: supercritical growth and domain geometry”, Adv. Differential Equations, 5 (2000), 1201–1220 | MR | Zbl
[27] Schmitt K., “Positive solutions of semilinear elliptic boundary value problems”, Topological Methods in Differential Equations and Inclusions (Montreal, PQ, 1994), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 472, Kluwer Acad. Publ., Dordrecht, 1995, 447–500 | MR | Zbl
[28] Schoen R. M., “Variational theory for the total scalar curvature functional for Riemannian metrics and related topics”, Topics in Calculus of Variations (Montecatini Terme, 1987), Lecture Notes in Math., 1365, Springer, Berlin, 1989, 120–154 | MR
[29] Strauss W. A., “Nonlinear invariant wave equations”, Invariant Wave Equations, Lecture Notes in Physics, 73, eds. G. Velo and A. S. Wightman, Springer-Verlag, New York, 1978, 197–249 | MR
[30] Strauss W. A., Nonlinear wave equations, CBMS Regional Conference Series, 73, Amer. Math. Soc., Providence, R.I., 1989 | MR | Zbl
[31] van der Vorst R. C. A. M., “Variational identities and applications to differential systems”, Arch. Rat. Mech. Anal., 116 (1991), 375–398 | DOI | MR | Zbl