@article{SIGMA_2011_7_a53,
author = {Yannis Tanoudis and Costas Daskaloyannis},
title = {Algebraic {Calculation} of the {Energy} {Eigenvalues} for the {Nondegenerate} {Three-Dimensional} {Kepler{\textendash}Coulomb} {Potential}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a53/}
}
TY - JOUR AU - Yannis Tanoudis AU - Costas Daskaloyannis TI - Algebraic Calculation of the Energy Eigenvalues for the Nondegenerate Three-Dimensional Kepler–Coulomb Potential JO - Symmetry, integrability and geometry: methods and applications PY - 2011 VL - 7 UR - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a53/ LA - en ID - SIGMA_2011_7_a53 ER -
%0 Journal Article %A Yannis Tanoudis %A Costas Daskaloyannis %T Algebraic Calculation of the Energy Eigenvalues for the Nondegenerate Three-Dimensional Kepler–Coulomb Potential %J Symmetry, integrability and geometry: methods and applications %D 2011 %V 7 %U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a53/ %G en %F SIGMA_2011_7_a53
Yannis Tanoudis; Costas Daskaloyannis. Algebraic Calculation of the Energy Eigenvalues for the Nondegenerate Three-Dimensional Kepler–Coulomb Potential. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a53/
[1] Kalnins E. G., Kress J. M., Miller W. Jr., “Nondegenerate three-dimensional complex Euclidean superintegrable systems and algebraic varieties”, J. Math. Phys., 48 (2007), 113518, 26 pp., arXiv: 0708.3044 | DOI | MR | Zbl
[2] Kalnins E. G., Kress J. M., Miller W. Jr., “Fine structure for 3D second-order superintegrable systems: three-parameter potentials”, J. Phys. A: Math. Theor., 40 (2007), 5875–5892 | DOI | MR | Zbl
[3] Verrier P. E., Evans N. W., “A new superintegrable Hamiltonian”, J. Math. Phys., 49 (2008), 022902, 8 pp., arXiv: 0712.3677 | DOI | MR | Zbl
[4] Kalnins E. G., Williams G. C., Miller W. Jr., Pogosyan G. S., “Superintegrability in three-dimensional Euclidean space”, J. Math. Phys., 40 (1999), 708–725 | DOI | MR | Zbl
[5] Daskaloyannis C., “Quadratic Poisson algebras of two-dimensional classical superintegrable systems and quadratic associative algebras of quantum superintegrable systems”, J. Math. Phys., 42 (2001), 1100–1119, arXiv: math-ph/0003017 | DOI | MR | Zbl
[6] Tanoudis Y., Daskaloyannis C., Proceedings of the XIIIth Conference “Symmetries in Physics” in Memory of Professor Yurii Fedorovich Smirnov (July 2009, Dubna) (to appear)
[7] Jacobson N., “General representation theory of Jordan algebras”, Trans. Amer. Math. Soc., 70 (1951), 509–530 ; Lister W. G., “A structure theory of Lie triple systems”, Trans. Amer. Math. Soc., 72 (1952), 217–242 | DOI | MR | Zbl | DOI | MR | Zbl
[8] Daskaloyannis C., Ypsilantis K., “Unified treatment and classification of superintegrable systems with integrals quadratic in momenta on a two dimensional manifold”, J. Math. Phys., 47 (2006), 042904, 38 pp., arXiv: math-ph/0412055 | DOI | MR | Zbl
[9] Daskaloyannis C., Ypsilantis K., “Quantum superintegrable systems with quadratic integrals on a two dimensional manifold”, J. Math. Phys., 48 (2007), 072108, 22 pp., arXiv: math-ph/0607058 | DOI | MR | Zbl
[10] Tanoudis Y., Daskaloyannis C., Contribution at the XXVII Colloquium on Group Theoretical Methods in Physics (August 2008, Yerevan, Armenia), arXiv: ; Daskaloyannis C., Tanoudis Y., “Quadratic algebras for three-dimensional superintegrable systems”, Phys. Atomic Nuclei, 73 (2010), 214–221 0902.0130 | DOI
[11] Marquette I., Winternitz P., “Polynomial Poisson algebras for classical superintegrable systems with a third-order integral of motion”, J. Math. Phys., 48 (2007), 012902, 16 pp., arXiv: ; Erratum: J. Math. Phys., 49 (2008), 019901 math-ph/0608021 | DOI | MR | Zbl | DOI | MR | Zbl
[12] Marquette I., Winternitz P., “Superintegrable systems with third-order integrals of motion”, J. Phys. A: Math. Theor., 41 (2008), 304031, 10 pp., arXiv: 0711.4783 | DOI | MR | Zbl
[13] Marquette I., “Superintegrability with third order integrals of motion, cubic algebras, and supersymmetric quantum mechanics. I. Rational function potentials”, J. Math. Phys., 50 (2009), 012101, 23 pp., arXiv: 0807.2858 | DOI | MR | Zbl
[14] Marquette I., “Superintegrability with third order integrals of motion, cubic algebras, and supersymmetric quantum mechanics. II. Painlevé transcendent potentials”, J. Math. Phys., 50 (2009), 095202, 18 pp., arXiv: 0811.1568 | DOI | MR | Zbl
[15] Marquette I., “Supersymmetry as a method of obtaining new superintegrable systems with higher order integrals of motion”, J. Math. Phys., 50 (2009), 122102, 10 pp., arXiv: 0908.1246 | DOI | MR | Zbl
[16] Marquette I.,, “Superintegrability and higher order polynomial algebras”, J. Phys. A: Math. Gen., 43 (2010), 135203, 15 pp., arXiv: 0908.4399 | DOI | MR | Zbl
[17] Quesne C., “Quadratic algebra approach to an exactly solvable position-dependent mass Schrödinger equation in two dimensions”, SIGMA, 3 (2007), 067, 14 pp., arXiv: 0705.2577 | DOI | MR | Zbl
[18] Marquette I., “Generalized MICZ-Kepler system, duality, polynomial, and deformed oscillator algebras”, J. Math. Phys., 51 (2010), 102105, 10 pp., arXiv: 1004.4579 | DOI | MR