@article{SIGMA_2011_7_a52,
author = {Kurt Bernardo Wolf and Luis Edgar Vicent},
title = {The {Fourier} $\mathsf U(2)$ {Group} and {Separation} of {Discrete} {Variables}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a52/}
}
TY - JOUR AU - Kurt Bernardo Wolf AU - Luis Edgar Vicent TI - The Fourier $\mathsf U(2)$ Group and Separation of Discrete Variables JO - Symmetry, integrability and geometry: methods and applications PY - 2011 VL - 7 UR - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a52/ LA - en ID - SIGMA_2011_7_a52 ER -
Kurt Bernardo Wolf; Luis Edgar Vicent. The Fourier $\mathsf U(2)$ Group and Separation of Discrete Variables. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a52/
[1] Wolf K. B., Geometric optics on phase space, Texts and Monographs in Physics, Springer-Verlag, Berlin, 2004 | MR
[2] Simon R., Wolf K. B., “Structure of the set of paraxial optical systems”, J. Opt. Soc. Amer. A, 17 (2000), 342–355 | DOI | MR
[3] Simon R., Wolf K. B., “Fractional Fourier transforms in two dimensions”, J. Opt. Soc. Amer. A, 17 (2000), 2368–2381 | DOI | MR
[4] Moshinsky M., Quesne C., “Linear canonical transformations and their unitary representation”, J. Math. Phys., 12 (1971), 1772–1779 | DOI | MR
[5] Moshinsky M., Quesne C., “Canonical transformations and matrix elements”, J. Math. Phys., 12 (1971), 1780–1786 | DOI | MR
[6] Wolf K. B., Integral transforms in science and engineering, Mathematical Concepts and Methods in Science and Engineering, 11, Plenum Press, New York – London, 1979 | MR | Zbl
[7] Collins S. A. Jr., “Lens-system diffraction integral written in terms of matrix optics”, J. Opt. Soc. Amer. A, 60 (1970), 1168–1177 | DOI
[8] Ding J.-J., Research of fractional Fourier transform and linear canonical transform, Ph.D. Thesis, National Taiwan University, 2001
[9] Hennelly B. M., Sheridan J. T., “Fast numerical algorithm for the linear canonical transform”, J. Opt. Soc. Amer. A, 22 (2005), 928–937 | DOI | MR
[10] Koç A., Ozaktas H. M., Candan C., Kutay M. A., “Digital computation of linear canonical transforms”, IEEE Trans. Signal Process., 56 (2008), 2382–2394 | DOI | MR
[11] Healy J. J., Sheridan J. T., “Sampling and discretization of the linear canonical transform”, Signal Process., 89 (2009), 641–648 | DOI | Zbl
[12] Gilmore R., Lie groups, Lie algebras, and some of their applications, John Wiley, New York, 1974 | Zbl
[13] Atakishiyev N. M., Wolf K. B., “Fractional Fourier–Kravchuk transform”, J. Opt. Soc. Amer. A, 14 (1997), 1467–1477 | DOI | MR
[14] Atakishiyev N. M., Vicent L. E., Wolf K. B., “Continuous vs. discrete fractional Fourier transforms”, J. Comput. Appl. Math., 107 (1999), 73–95 | DOI | MR | Zbl
[15] Atakishiyev N. M., Pogosyan G. S., Vicent L. E., Wolf K. B., “Finite two-dimensional oscillator. I. The Cartesian model”, J. Phys. A: Math. Gen., 34 (2001), 9381–9398 | DOI | MR | Zbl
[16] Atakishiyev N. M., Pogosyan G. S., Wolf K. B., “Finite models of the oscillator”, Phys. Part. Nuclei, 36 (2005), 247–265
[17] Wolf K. B., “Discrete systems and signals on phase space”, Appl. Math. Inf. Sci., 4 (2010), 141–181 | MR | Zbl
[18] Atakishiyev N. M., Pogosyan G. S., Vicent L. E., Wolf K. B., “Finite two-dimensional oscillator. II. The radial model”, J. Phys. A: Math. Gen., 34 (2001), 9399–9415 | DOI | MR | Zbl
[19] Vicent L. E., Wolf K. B., “Unitary transformation between Cartesian- and polar-pixellated screens”, J. Opt. Soc. Amer. A, 25 (2008), 1875–1884 | DOI
[20] Vicent L. E., “Unitary rotation of square-pixellated images”, Appl. Math. Comput., 221 (2009), 111–117 | DOI | MR
[21] Wolf K. B., Alieva T., “Rotation and gyration of finite two-dimensional modes”, J. Opt. Soc. Amer. A, 25 (2008), 365–370 | DOI
[22] Biedenharn L. C., Louck J. D., Angular momentum in quantum mechanics, Section 3.6, Encyclopedia of Mathematics and its Applications, eds. G.-C. Rota, Addison-Wesley, 1981
[23] Atakishiyev N. M., Suslov S. K., “Difference analogs of the harmonic oscillator”, Theoret. and Math. Phys., 85 (1991), 1055–1062 | DOI | MR
[24] Krawtchouk M., “Sur une généralization des polinômes d'Hermite”, Compt. Rend. Acad. Sci. Paris, 189 (1929), 620–622 | Zbl
[25] I. M. Gel'fand, Collected papers, v. II, Springer-Verlag, Berlin, 1987, 653–656 | MR | MR
[26] Miller W. Jr., Symmetry and separation of variables, v. 4, Encyclopedia of Mathematics and Its Applications, eds. G.-C. Rota, Addison-Wesley Publ. Co., Reading, Mass., 1981 | MR
[27] Atakishiyev N. M., Jafarov E. I., Nagiyev Sh. M., Wolf K. B., “Meixner oscillators”, Rev. Mexicana Fís., 44 (1998), 235–244 | MR
[28] Wolf K. B., “Mode analysis and signal restoration with Kravchuk functions”, J. Opt. Soc. Amer. A, 26 (2009), 509–516 | DOI
[29] Vicent L. E., Wolf K. B., “Analysis of digital images into energy-angular momentum modes”, J. Opt. Soc. Amer. A, 28 (2011), 808–814 | DOI
[30] Grosche C., Karayan Kh. G., Pogosyan G. S., Sissakian A. N., “Free motion on the three-dimensional sphere: the ellipso-cylindrical bases”, J. Phys. A: Math. Gen., 30 (1997), 1629–1657 | DOI | MR | Zbl
[31] Bandres M. A., Gutirrez-Vega J. C., “Elliptical beams”, Opt. Express, 16 (2008), 21087–21092 | DOI
[32] Atakishiev N. M., Pogosyan G. S., Wolf K. B., Work in progress