@article{SIGMA_2011_7_a51,
author = {Philip Broadbridge and Peter Vassiliou},
title = {The {Role} of {Symmetry} and {Separation} in {Surface} {Evolution} and {Curve} {Shortening}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a51/}
}
TY - JOUR AU - Philip Broadbridge AU - Peter Vassiliou TI - The Role of Symmetry and Separation in Surface Evolution and Curve Shortening JO - Symmetry, integrability and geometry: methods and applications PY - 2011 VL - 7 UR - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a51/ LA - en ID - SIGMA_2011_7_a51 ER -
Philip Broadbridge; Peter Vassiliou. The Role of Symmetry and Separation in Surface Evolution and Curve Shortening. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a51/
[1] Abresch U., Langer J., “The normalized curve shortening flow and homothetic solutions”, J. Differential Geom., 23 (1986), 175–196 | MR | Zbl
[2] Angenent S., “On the formation of singularities in the curve shortening flow”, J. Differential Geom., 33 (1991), 601–633 | MR | Zbl
[3] Arrigo D. J., Broadbridge P., Tritscher P., Karciga Y., “The depth of a steep evaporating grain boundary groove: application of comparison theorems”, Math. Comput. Modelling, 25:10 (1997), 1–8 | DOI | MR | Zbl
[4] Bluman G. W., Reid G. J., Kumei S., “New classes of symmetries for partial differential equations”, J. Math. Phys., 29 (1988), 806–811 | DOI | MR | Zbl
[5] Broadbridge P., “Exact solvability of the Mullins nonlinear diffusion model of groove development”, J. Math. Phys., 30 (1989), 1648–1651 | DOI | MR | Zbl
[6] Broadbridge P., Tritscher P., “An integrable fourth-order nonlinear evolution equation applied to thermal grooving of metal surfaces”, IMA J. Appl. Math., 53 (1994), 249–265 | DOI | MR | Zbl
[7] Broadbridge P., Goard J. M., “Temperature-dependent surface diffusion near a grain boundary”, J. Engrg. Math., 66 (2010), 87–102 | DOI | MR | Zbl
[8] Cahn J. W., Taylor J. E., “Overview no. 113 surface motion by surface diffusion”, Acta Metall. Mater., 42 (1994), 1045–1063 | DOI
[9] Cao F., Geometric curve evolution and image processing, Lecture Notes in Mathematics, 1805, Springer-Verlag, Berlin, 2003 | MR | Zbl
[10] Carslaw H. S., Jaeger J. C., Conduction of heat in solids, 2nd. ed., Clarendon Press, Oxford, 1959 | MR
[11] Chou K.-S., Li G.-X., “Optimal systems and invariant solutions for the curve shortening problem”, Comm. Anal. Geom., 10 (2002), 241–274 | MR | Zbl
[12] Clarkson P. A., Fokas A. S., Ablowitz M. J., “Hodograph transformations of linearizable partial differential equations”, SIAM J. Appl. Math., 49 (1989), 1188–1209 | DOI | MR | Zbl
[13] Daskalopoulos P., Hamilton R., Sesum N., “Classification of compact ancient solutions to the curve shortening flow”, J. Differential Geom., 84 (2010), 455–465, arXiv: 0806.1757 | MR
[14] Doyle P. W., Vassiliou P. J., “Separation of variables for the 1-dimensional non-linear diffusion equation”, Internat. J. Non-Linear Mech., 33 (1998), 315–326 | DOI | MR | Zbl
[15] Galaktionov V. A., Dorodnitsyn V. A., Elenin G. G., Kurdyumov S. P., Samarskii A. A., “A quasilinear equation of heat conduction with a source: peaking, localization, symmetry, exact solutions, asymptotic behavior, structures”, J. Soviet Math., 41 (1988), 1222–1292 | DOI
[16] Gage M., Hamilton R., “The heat equation shrinking convex plane curves”, J. Differential Geom., 23 (1986), 69–96 | MR | Zbl
[17] Grayson M., “The heat equation shrinks embedded plane curves to round points”, J. Differential Geom., 26 (1987), 285–314 | MR | Zbl
[18] Halldorsson H. P., Self-similar solutions to the curve shortening flow, arXiv: 1007.1617
[19] Herring C., “Surface tension as a motivation for sintering”, The Physics of Powder Metallurg, eds. W. E. Kingston, McGraw-Hill, 1951, 143–179
[20] Ishimura N., “Curvature evolution of plane curves with prescribed opening angle”, Bull. Austral. Math. Soc., 52 (1995), 287–296 | DOI | MR | Zbl
[21] King J. R., “Emerging areas of mathematical modelling”, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 358:1765 (2000), 3–19 | DOI | MR | Zbl
[22] Kingston J. G., Rogers C., “Reciprocal Bäcklund transformations of conservation laws”, Phys. Lett. A, 92 (1982), 261–264 | DOI | MR
[23] Malladi R., Sethian J. A., “Image processing via level set curvature flow”, Proc. Nat. Acad. Sci. USA, 92 (1995), 7046–7050 | DOI | MR | Zbl
[24] Mullins W. W., “Theory of thermal grooving”, J. Appl. Phys., 28 (1957), 333–339 | DOI
[25] Olver P. J., Sapiro G., Tannenbaum A., “Invariant geometric evolutions of surfaces and volumetric smoothing”, SIAM J. Appl. Math., 57 (1997), 176–194 | DOI | MR | Zbl
[26] Tritscher P., Integrable nonlinear evolution equations applied to solidification and surface redistribution, PhD Thesis, University of Wollongong, 1995 | MR
[27] Tritscher P., “An integrable fourth-order nonlinear evolution equation applied to surface redistribution due to capillarity”, J. Austral. Math. Soc. Ser. B, 38 (1997), 518–541 | DOI | MR | Zbl
[28] Tritscher P., Broadbridge P., “Grain boundary grooving by surface diffusion: an analytic nonlinear model for a symmetric groove”, Proc. Roy. Soc. Lond. A, 450:1940 (1995), 569–587 | DOI | Zbl