On Parameter Differentiation for Integral Representations of Associated Legendre Functions
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For integral representations of associated Legendre functions in terms of modified Bessel functions, we establish justification for differentiation under the integral sign with respect to parameters. With this justification, derivatives for associated Legendre functions of the first and second kind with respect to the degree are evaluated at odd-half-integer degrees, for general complex-orders, and derivatives with respect to the order are evaluated at integer-orders, for general complex-degrees. We also discuss the properties of the complex function $f:\mathbb C\setminus\{-1,1\}\to\mathbb C$ given by $f(z)=z/(\sqrt{z+1}\sqrt{z-1})$.
Keywords: Legendre functions; modified Bessel functions; derivatives.
@article{SIGMA_2011_7_a49,
     author = {Howard S. Cohl},
     title = {On {Parameter} {Differentiation} for {Integral} {Representations} of {Associated} {Legendre} {Functions}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a49/}
}
TY  - JOUR
AU  - Howard S. Cohl
TI  - On Parameter Differentiation for Integral Representations of Associated Legendre Functions
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a49/
LA  - en
ID  - SIGMA_2011_7_a49
ER  - 
%0 Journal Article
%A Howard S. Cohl
%T On Parameter Differentiation for Integral Representations of Associated Legendre Functions
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a49/
%G en
%F SIGMA_2011_7_a49
Howard S. Cohl. On Parameter Differentiation for Integral Representations of Associated Legendre Functions. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a49/

[1] Abramowitz M., Stegun I. A., Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, 55, U.S. Government Printing Office, Washington, D.C., 1964 | MR

[2] Apelblat A., Kravitsky N., “Integral representations of derivatives and integrals with respect to the order of the Bessel functions $J_\nu(t)$, $I_\nu(t)$, the Anger function $J_\nu(t)$ and the integral Bessel function $\mathrm{Ji}_\nu(t)$”, IMA J. Appl. Math., 34 (1985), 187–210 | DOI | MR | Zbl

[3] Brychkov Yu. A., Handbook of special functions: derivatives, integrals, series and other formulas, CRC Press, Boca Raton, FL, 2008 | MR | Zbl

[4] Brychkov Yu. A., “On the derivatives of the Legendre functions ${P}_\nu^\mu(z)$ and ${Q}_\nu^\mu(z)$ with respect to $\mu$ and $\nu$”, Integral Transforms Spec. Funct., 21 (2010), 175–181 | DOI | MR | Zbl

[5] Cohl H. S., “Derivatives with respect to the degree and order of associated Legendre functions for $|z|>1$ using modified Bessel functions”, Integral Transforms Spec. Funct., 21 (2010), 581–588, arXiv: 0911.5266 | DOI | MR | Zbl

[6] Cohl H. S., Rau A. R. P., Tohline J. E., Browne D. A., Cazes J. E., Barnes E. I., “Useful alternative to the multipole expansion of $1/r$ potentials”, Phys. Rev. A, 64 (2001), 052509, 5 pp. | DOI

[7] Cohl H. S., Tohline J. E., “A compact cylindrical Green's function expansion for the solution of potential problems”, Astrophys. J., 527 (1999), 86–101 | DOI

[8] Cohl H. S., Tohline J. E., Rau A. R. P., Srivastava H. M., “Developments in determining the gravitational potential using toroidal functions”, Astronom. Nachrichten, 321 (2000), 363–372 | 3.0.CO;2-X class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[9] Gradshteyn I. S., Ryzhik I. M., Table of integrals, series, and products, 7th ed., Elsevier/Academic Press, Amsterdam, 2007 | MR | Zbl

[10] Hobson E. W., The theory of spherical and ellipsoidal harmonics, Chelsea Publishing Company, New York, 1955 | MR

[11] Lang S., Real and functional analysis, Graduate Texts in Mathematics, 142, 3rd ed., Springer-Verlag, New York, 1993 | MR | Zbl

[12] Magnus W., Oberhettinger F., Soni R. P., Formulas and theorems for the special functions of mathematical physics, Die Grundlehren der mathematischen Wissenschaften, 52, 3rd ed., Springer-Verlag, New York, 1966 | MR | Zbl

[13] Olver F. W. J., Asymptotics and special functions, AKP Classics, A K Peters Ltd., Wellesley, MA, 1997 | MR | Zbl

[14] Olver F. W. J., Lozier D. W., Boisvert R. F., Clark C. W. (eds.), NIST handbook of mathematical functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC, 2010 | MR

[15] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integrals and series, v. 2, Special functions, 2nd ed., Gordon Breach Science Publishers, New York, 1988 | MR | Zbl

[16] Silverman R. A., Complex analysis with applications, Prentice-Hall Inc., Englewood Cliffs, N.J., 1974 | MR

[17] Szmytkowski R., “On the derivative of the Legendre function of the first kind with respect to its degree”, J. Phys. A: Math. Gen., 39 (2006), 15147–15172, arXiv: ; Addendum J. Phys. A: Math. Theor., 40 (2007), 14887–14891 ; Corrigendum J. Phys. A: Math. Theor., 40 (2007), 7819–7820 0907.3217 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[18] Szmytkowski R., A note on parameter derivatives of classical orthogonal polynomials, arXiv: 0901.2639

[19] Szmytkowski R., On parameter derivatives of the associated Legendre function of the first kind (with applications to the construction of the associated Legendre function of the second kind of integer degree and order), arXiv: 0910.4550

[20] Szmytkowski R., “On the derivative of the associated Legendre function of the first kind of integer degree with respect to its order (with applications to the construction of the associated Legendre function of the second kind of integer degree and order)”, J. Math. Chem., 46 (2009), 231–260 | DOI | MR | Zbl

[21] Szmytkowski R., “On the derivative of the associated Legendre function of the first kind of integer order with respect to its degree (with applications to the construction of the associated Legendre function of the second kind of integer degree and order)”, J. Math. Chem. (to appear) , arXiv: 0907.3217 | DOI | MR

[22] Szmytkowski R., “Green's function for the wavized Maxwell fish-eye problem”, J. Phys. A: Math. Theor., 44 (2011), 065203, 14 pp. | DOI | MR | Zbl

[23] Watson G. N., A treatise on the theory of Bessel functions, Cambridge Mathematical Library, 2nd ed., Cambridge University Press, Cambridge, 1944 | MR | Zbl

[24] Whipple F. J. W., “A symmetrical relation between Legendre's functions with parameters $\cosh\alpha$ and $\coth\alpha$”, Proc. London Math. Soc., 16 (1917), 301–314 | Zbl