@article{SIGMA_2011_7_a48,
author = {Christopher M. Ormerod},
title = {Symmetries in {Connection} {Preserving} {Deformations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a48/}
}
Christopher M. Ormerod. Symmetries in Connection Preserving Deformations. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a48/
[1] Adams R. C., “On the linear ordinary $q$-difference equation”, Ann. of Math., 30 (1928), 195–205 | DOI | MR
[2] Bellon M. P., Viallet C.-M., “Algebraic entropy”, Comm. Math. Phys., 204 (1999), 425–437, arXiv: chao-dyn/9805006 | DOI | MR | Zbl
[3] Birkhoff G. D., “The generalized Riemann problem for linear differential equations and the allied problems for linear difference and $q$-difference equations”, Proc. Amer. Acad., 49 (1913), 512–568 | DOI
[4] Birkhoff G. D., Guenther P. E., “Note on a canonical form for the linear $q$-difference system”, Proc. Nat. Acad. Sci. USA, 27 (1941), 218–222 | DOI | MR
[5] Birkhoff G. D., Trjitzinsky W. J., “Analytic theory of singular difference equations”, Acta Math., 60 (1933), 1–89 | DOI | MR
[6] Forrester P. J., Ormerod C. M., Witte N. S., Connection preserving deformations and $q$-semi-classical orthogonal polynomials, arXiv: 0906.0640
[7] Grammaticos B., Ramani A., Papageorgiou V., “Do integrable mappings have the Painlevé property?”, Phys. Rev. Lett., 67 (1991), 1825–1828 | DOI | MR | Zbl
[8] Hay M., Hietarinta J., Joshi N., Nijhoff F., “A Lax pair for a lattice modified KdV equation, reductions to $q$-Painlevé equations and associated Lax pairs”, J. Phys. A: Math. Theor., 40 (2007), F61–F73 | DOI | MR | Zbl
[9] Its A. R., Kitaev A. V., Fokas A. S., “An isomonodromy approach to the theory of two-dimensional quantum gravity”, Russian Math. Surveys, 45:6 (1990), 155–157 | DOI | MR | Zbl
[10] Jimbo M., Miwa T., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II”, Phys. D, 2 (1981), 407–448 | DOI | MR | Zbl
[11] Jimbo M., Miwa T., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III”, Phys. D, 4 (1981), 26–46 | DOI | MR | Zbl
[12] Jimbo M., Miwa T., Ueno K., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and $\tau$-function”, Phys. D, 2 (1981), 306–352 | DOI | MR | Zbl
[13] Jimbo M., Sakai H., “A $q$-analog of the sixth Painlevé equation”, Lett. Math. Phys., 38 (1996), 145–154, arXiv: chao-dyn/9507010 | DOI | MR | Zbl
[14] Kajiwara K., Kimura K., “On a $q$-difference Painlevé III equation. I. Derivation, symmetry and Riccati type solutions”, J. Nonlinear Math. Phys., 10 (2003), 86–102, arXiv: nlin.SI/0205019 | DOI | MR | Zbl
[15] Kajiwara K., Noumi M., Yamada Y., “A study on the fourth $q$-Painlevé equation”, J. Phys. A: Math. Gen., 34 (2001), 8563–8581, arXiv: nlin.SI/0012063 | DOI | MR | Zbl
[16] Murata M., “Lax forms of the $q$-Painlevé equations”, J. Phys. A: Math. Theor., 42 (2009), 115201, 17 pp., arXiv: 0810.0058 | DOI | MR | Zbl
[17] Noumi M., Yamada Y., “Affine Weyl groups, discrete dynamical systems and Painlevé equations”, Comm. Math. Phys., 199 (1998), 281–295, arXiv: math.QA/9804132 | DOI | MR | Zbl
[18] Okamoto K., “Studies on the Painlevé equations. III. Second and fourth Painlevé equations, $P_{\rm II}$ and $P_{\rm IV}$”, Math. Ann., 275 (1986), 221–255 | DOI | MR | Zbl
[19] Okamoto K., “Studies on the Painlevé equations. I. Sixth Painlevé equation $P_{\rm VI}$”, Ann. Mat. Pura Appl. (4), 146 (1987), 337–381 | DOI | MR | Zbl
[20] Okamoto K., “Studies on the Painlevé equations. II. Fifth Painlevé equation $P_{\rm V}$”, Japan. J. Math. (N.S.), 13 (1987), 47–76 | MR | Zbl
[21] Okamoto K., “Studies on the Painlevé equations. IV. Third Painlevé equation $P_{\rm III}$”, Funkcial. Ekvac., 30 (1987), 305–332 | MR | Zbl
[22] Ormerod C., “A study of the associated linear problem for $q$-$P_{\rm V}$”, J. Phys. A: Math. Theor., 44 (2011), 025201, 26 pp., arXiv: 0911.5552 | DOI | Zbl
[23] Ormerod C. M., “The lattice structure of connection preserving deformations for $q$-Painlevé equations I”, SIGMA, 7 (2011), 045, 22 pp., arXiv: 1010.3036 | DOI | MR | Zbl
[24] Papageorgiou V. G., Nijhoff F. W., Grammaticos B., Ramani A., “Isomonodromic deformation problems for discrete analogues of Painlevé equations”, Phys. Lett. A, 164 (1992), 57–64 | DOI | MR
[25] Ramani A., Grammaticos B., Hietarinta J., “Discrete versions of the Painlevé equations”, Phys. Rev. Lett., 67 (1991), 1829–1832 | DOI | MR | Zbl
[26] Sakai H., “Rational surfaces associated with affine root systems and geometry of the Painlevé equations”, Comm. Math. Phys., 220 (2001), 165–229 | DOI | MR | Zbl
[27] Sauloy J., “Galois theory of Fuchsian $q$-difference equations”, Ann. Sci. École Norm. Sup. (4), 36 (2003), 925–968, arXiv: math.QA/0210221 | DOI | MR | Zbl
[28] Sauloy J., “Algebraic construction of the Stokes sheaf for irregular linear $q$-difference equations”, Analyse complexe, systèmes dynamiques, sommabilité des séries divergentes et théories galoisiennes. I, Astérisque, no. 296, 2004, 227–251 | MR | Zbl
[29] van der Put M., Reversat M., “Galois theory of $q$-difference equations”, Ann. Fac. Sci. Toulouse Math. (6), 16 (2007), 665–718, arXiv: math.QA/0507098 | DOI | MR | Zbl