@article{SIGMA_2011_7_a46,
author = {Kevin Coulembier},
title = {The {Fourier} {Transform} on {Quantum} {Euclidean} {Space}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a46/}
}
Kevin Coulembier. The Fourier Transform on Quantum Euclidean Space. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a46/
[1] Atakishiyeva M. K., Atakishiyev N. M., “$q$-Laguerre and Wall polynomials are related by the Fourier–Gauss transform”, J. Phys. A: Math. Gen., 30 (1997), L429–L432 | DOI | MR | Zbl
[2] Bettaibi N., Bouzeffour F., Ben Elmonser H., Binous W., “Elements of harmonic analysis related to the third basic zero order Bessel function”, J. Math. Anal. Appl., 342 (2008), 1203–1219 | DOI | MR | Zbl
[3] Brzeziński T., Majid S., “Quantum group gauge theory on quantum spaces”, Comm. Math. Phys., 157 (1993), 591–638, arXiv: ; Erratum: Comm. Math. Phys., 167 (1995), 235 hep-th/9208007 | DOI | MR | Zbl | DOI | MR | Zbl
[4] Carnovale G., “On the braided Fourier transform on the $n$-dimensional quantum space”, J. Math. Phys., 40 (1999), 5972–5997, arXiv: math.QA/9810011 | DOI | MR | Zbl
[5] Carow-Watamura U., Schlieker M., Watamura S., “${\rm SO}\sb q(N)$ covariant differential calculus on quantum space and quantum deformation of Schrödinger equation”, Z. Phys. C, 49 (1991), 439–446 | DOI | MR
[6] Carow-Watamura U., Schlieker M., Watamura S., Weich W., “Bicovariant differential calculus on quantum groups ${\rm SU}_q(N)$ and ${\rm SO}_q(N)$”, Comm. Math. Phys., 142 (1991), 605–641 | DOI | MR | Zbl
[7] Carow-Watamura U., Watamura S., “The $q$-deformed Schrödinger equation of the harmonic oscillator on the quantum Euclidean space”, Internat. J. Modern Phys. A, 9 (1994), 3989–4008 | DOI | MR | Zbl
[8] Ciccoli N., Koelink E., Koornwinder T., “$q$-Laguerre polynomials and big $q$-Bessel functions and their orthogonality relations”, Methods Appl. Anal., 6 (1999), 109–127, arXiv: math.CA/9805023 | MR | Zbl
[9] Coulembier K., De Bie H., Sommen F., “Integration in superspace using distribution theory”, J. Phys. A: Math. Theor., 42 (2009), 395206, 23 pp., arXiv: 0909.2544 | DOI | MR | Zbl
[10] Coulembier K., Sommen F., “$q$-deformed harmonic and Clifford analysis and the $q$-Hermite and Laguerre polynomials”, J. Phys. A: Math. Theor., 43 (2010), 115202, 28 pp., arXiv: 1002.4987 | DOI | MR | Zbl
[11] Coulembier K., De Bie H., Sommen F., Orthogonality of Hermite polynomials in superspace and Mehler type formulae, arXiv: 1002.1118
[12] De Bie H., Sommen F., “Spherical harmonics and integration in superspace”, J. Phys. A: Math. Theor., 40 (2007), 7193–7212, arXiv: 0705.3148 | DOI | MR | Zbl
[13] Dunne R., Macfarlane A. J., de Azcárraga J. A., Pérez Bueno J. C., “Supersymmetry from a braided point of view”, Phys. Lett. B, 387 (1996), 294–299, arXiv: hep-th/9607220 | DOI | MR
[14] Fiore G., “The ${\rm SO}\sb q(N,R)$-symmetric harmonic oscillator on the quantum Euclidean space $R\sp N\sb q$ and its Hilbert space structure”, Internat. J. Modern Phys. A, 8 (1993), 4679–4729, arXiv: hep-th/9306030 | DOI | MR | Zbl
[15] Fiore G., “Realization of $U_q({\rm so}(N))$ within the differential algebra on $R^N_q$”, Comm. Math. Phys., 169 (1995), 475–500, arXiv: hep-th/9403033 | DOI | MR | Zbl
[16] Floreanini R., Vinet L., “Quantum algebra approach to $q$-Gegenbauer polynomials”, J. Comput. Appl. Math., 57 (1995), 123–133 | DOI | MR | Zbl
[17] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 35, Cambridge University Press, Cambridge, 1990 | MR | Zbl
[18] Hochstadt H., The functions of mathematical physics, Pure and Applied Mathematics, 23, Wiley-Interscience, New York – London – Sydney, 1971 | MR | Zbl
[19] Howe R., Tan E. C., Nonabelian harmonic analysis. Applications of ${\rm SL}(2,R)$, Universitext, Springer-Verlag, New York, 1992 | MR
[20] Iorgov N., Klimyk A., “Harmonics on the quantum Euclidean space”, J. Phys. A: Math. Gen., 36 (2003), 7545–7558, arXiv: math.QA/0302119 | DOI | MR | Zbl
[21] Ismail M. E. H., “The zeros of basic Bessel functions, the functions $J_{\nu+ax}(x)$, and associated orthogonal polynomials”, J. Math. Anal. Appl., 86 (1982), 1–19 | DOI | MR | Zbl
[22] Jackson F., “On $q$-functions and a certain difference operator”, Trans. Roy. Soc. Edinburgh, 46 (1908), 253–281
[23] Kempf A., Majid S., “Algebraic $q$-integration and Fourier theory on quantum and braided spaces”, J. Math. Phys., 35 (1994), 6802–6837 | DOI | MR | Zbl
[24] Koekoek R., Lesky P. A., Swarttouw R. F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl
[25] Koekoek R., Swarttouw R. F., The Askey-scheme of hypergeometric orthogonal polynomials and its $q$-analogue, Report no. 98-17, Department of Technical Mathematics and Informatics, Delft University of Technology, 1998 available at http://aw.twi.tudelft.nl/~koekoek/askey/
[26] Koornwinder T., “Special functions and $q$-commuting variables”, Special Functions, $q$-Series and Related Topics (Toronto, ON, 1995), Fields Inst. Commun., 14, Amer. Math. Soc., Providence, RI, 1997, 131–166, arXiv: q-alg/9608008 | MR | Zbl
[27] Koornwinder T., Swarttouw R., “On $q$-analogues of the Fourier and Hankel transforms”, Trans. Amer. Math. Soc., 333 (1992), 445–461 | DOI | MR | Zbl
[28] Majid S., “$C$-statistical quantum groups and Weyl algebras”, J. Math. Phys., 33 (1992), 3431–3444 | DOI | MR | Zbl
[29] Majid S., “Free braided differential calculus, braided binomial theorem, and the braided exponential map”, J. Math. Phys., 34 (1993), 4843–4856, arXiv: hep-th/9302076 | DOI | MR | Zbl
[30] Moak D., “The $q$-analogue of the Laguerre polynomials”, J. Math. Anal. Appl., 81 (1981), 20–47 | DOI | MR | Zbl
[31] Ogievetsky O., Zumino B., “Reality in the differential calculus on $q$-Euclidean spaces”, Lett. Math. Phys., 25 (1992), 121–130, arXiv: hep-th/9205003 | DOI | MR | Zbl
[32] Schirrmacher A., “Generalized $q$-exponentials related to orthogonal quantum groups and Fourier transformations of noncommutative spaces”, J. Math. Phys., 36 (1995), 1531–1546, arXiv: hep-th/9409132 | DOI | MR | Zbl
[33] Sugitani T., “Harmonic analysis on quantum spheres associated with representations of $U_q(\mathfrak{so}_N)$ and $q$-Jacobi polynomials”, Compositio Math., 99 (1995), 249–281 | MR | Zbl
[34] Steinacker H., “Integration on quantum Euclidean space and sphere”, J. Math. Phys., 37 (1996), 4738–4749, arXiv: q-alg/9506020 | DOI | MR | Zbl
[35] Wachter H., “$q$-integration on quantum spaces”, Eur. Phys. J. C Part. Fields, 32 (2003), 281–297, arXiv: hep-th/0206083 | DOI | MR | Zbl
[36] Wachter H., “$q$-exponentials on quantum spaces”, Eur. Phys. J. C Part. Fields, 37 (2004), 379–389, arXiv: hep-th/0401113 | DOI | MR | Zbl