@article{SIGMA_2011_7_a44,
author = {Christopher M. Ormerod},
title = {The {Lattice} {Structure} of {Connection} {Preserving} {Deformations} for $q${-Painlev\'e} {Equations~I}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a44/}
}
TY - JOUR AU - Christopher M. Ormerod TI - The Lattice Structure of Connection Preserving Deformations for $q$-Painlevé Equations I JO - Symmetry, integrability and geometry: methods and applications PY - 2011 VL - 7 UR - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a44/ LA - en ID - SIGMA_2011_7_a44 ER -
Christopher M. Ormerod. The Lattice Structure of Connection Preserving Deformations for $q$-Painlevé Equations I. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a44/
[1] Adams R. C., “On the linear ordinary $q$-difference equation”, Ann. of Math., 30 (1928), 195–205 | DOI | MR
[2] Bellon M. P., Viallet C.-M., “Algebraic entropy”, Comm. Math. Phys., 204 (1999), 425–437, arXiv: chao-dyn/9805006 | DOI | MR | Zbl
[3] Birkhoff G. D., “General theory of linear difference equations”, Trans. Amer. Math. Soc., 12 (1911), 243–284 | DOI | MR | Zbl
[4] Birkhoff G. D., “The generalized Riemann problem for linear differential equations and the allied problems for linear difference and $q$-difference equations”, Proc. Amer. Acad., 49 (1913), 512–568 | DOI
[5] Birkhoff G. D., Guenther P. E., “Note on a canonical form for the linear $q$-difference system”, Proc. Nat. Acad. Sci. USA, 27 (1941), 218–222 | DOI | MR
[6] Carmichael R. D., “The general theory of linear $q$-difference equations”, Amer. J. Math., 34 (1912), 147–168 | DOI | MR | Zbl
[7] Di Vizio L., Ramis J.-P., Sauloy J., Zhang C., “Équations aux $q$-différences”, Gaz. Math., 96 (2003), 20–49 | MR | Zbl
[8] Fuchs R., “Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen”, Math. Ann., 63 (1907), 301–321 | DOI | MR | Zbl
[9] Fuchs R., “Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen”, Math. Ann., 70 (1911), 525–549 | DOI | MR | Zbl
[10] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 35, Cambridge University Press, Cambridge, 1990 | MR | Zbl
[11] Jimbo M., Miwa T., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II”, Phys. D, 2 (1981), 407–448 | DOI | MR | Zbl
[12] Jimbo M., Miwa T., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III”, Phys. D, 4 (1981), 26–46 | DOI | MR | Zbl
[13] Jimbo M., Miwa T., Ueno K., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and $\tau$-function”, Phys. D, 2 (1981), 306–352 | DOI | MR | Zbl
[14] Jimbo M., Sakai H., “A $q$-analog of the sixth Painlevé equation”, Lett. Math. Phys., 38 (1996), 145–154, arXiv: chao-dyn/9507010 | DOI | MR | Zbl
[15] Joshi N., Burtonclay D., Halburd R. G., “Nonlinear nonautonomous discrete dynamical systems from a general discrete isomonodromy problem”, Lett. Math. Phys., 26 (1992), 123–131 | DOI | MR | Zbl
[16] Le Caine J., “The linear $q$-difference equation of the second order”, Amer. J. Math., 65 (1943), 585–600 | DOI | MR | Zbl
[17] Murata M., “Lax forms of the $q$-Painlevé equations”, J. Phys. A: Math. Theor., 42 (2009), 115201, 17 pp., arXiv: 0810.0058 | DOI | MR | Zbl
[18] Noumi M., “An introduction to birational Weyl group actions”, Symmetric Functions 2001: Surveys of Developments and Perspectives, NATO Sci. Ser. II Math. Phys. Chem., 74, Kluwer Acad. Publ., Dordrecht, 2002, 179–222 | MR | Zbl
[19] Noumi M., Yamada Y., “A new Lax pair for the sixth Painlevé equation associated with $\widehat{{so}}(8)$”, Microlocal Analysis and Complex Fourier Analysis, World Sci. Publ., River Edge, NJ, 2002, 238–252, arXiv: math-ph/0203029 | DOI | MR | Zbl
[20] Ormerod C. M., A study of the associated linear problem for $q$-$\mathrm{P}_{\rm V}$, arXiv: 0911.5552
[21] Papageorgiou V. G., Nijhoff F. W., Grammaticos B., Ramani A., “Isomonodromic deformation problems for discrete analogues of Painlevé equations”, Phys. Lett. A, 164 (1992), 57–64 | DOI | MR
[22] Ramani A., Grammaticos B., Hietarinta J., “Discrete versions of the Painlevé equations”, Phys. Rev. Lett., 67 (1991), 1829–1832 | DOI | MR | Zbl
[23] Sakai H., “Rational surfaces associated with affine root systems and geometry of the Painlevé equations”, Comm. Math. Phys., 220 (2001), 165–229 | DOI | MR | Zbl
[24] Sakai H., “A $q$-analog of the Garnier system”, Funkcial. Ekvac., 48 (2005), 273–297 | DOI | MR | Zbl
[25] Sakai H., “Lax form of the $q$-Painlevé equation associated with the $A\sp{(1)}\sb2$ surface”, J. Phys. A: Math. Gen., 39 (2006), 12203–12210 | DOI | MR | Zbl
[26] Sauloy J., “Galois theory of Fuchsian $q$-difference equations”, Ann. Sci. École Norm. Sup. (4), 36 (2003), 925–968, arXiv: math.QA/0210221 | DOI | MR | Zbl
[27] Shioda T., Takano K., “On some Hamiltonian structures of Painlevé systems. I”, Funkcial. Ekvac., 40 (1997), 271–291 | MR | Zbl
[28] Trjitzinsky W. J., “Analytic theory of linear $q$-difference equations”, Acta Math., 61 (1933), 1–38 | DOI | MR
[29] van der Put M., Reversat M., “Galois theory of $q$-difference equations”, Ann. Fac. Sci. Toulouse Math. (6), 16 (2007), 665–718, arXiv: math.QA/0507098 | DOI | MR | Zbl
[30] van der Put M., Singer M. F., Galois theory of difference equations, Lecture Notes in Mathematics, 1666, Springer-Verlag, Berlin, 1997 | MR | Zbl
[31] Yamada Y., “Lax formalism for $q$-Painlevé equations with affine Weyl group symmetry of type $E^{(1)}_n$”, Int. Math. Res. Not. (to appear) , arXiv: 1004.1687 | DOI
[32] Yamada Y., “A Lax formalism for the elliptic difference Painlevé equation”, SIGMA, 5 (2009), 042, 15 pp., arXiv: 0811.1796 | DOI | MR | Zbl