@article{SIGMA_2011_7_a42,
author = {Andrei A. Malykh and Mikhail B. Sheftel},
title = {Recursions of {Symmetry} {Orbits} and {Reduction} without {Reduction}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a42/}
}
Andrei A. Malykh; Mikhail B. Sheftel. Recursions of Symmetry Orbits and Reduction without Reduction. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a42/
[1] Sheftel M. B., Malykh A. A., “On classification of second-order PDEs possessing partner symmetries”, J. Phys. A: Math. Theor., 42 (2009), 395202, 20 pp., arXiv: 0904.2909 | DOI | MR | Zbl
[2] Malykh A. A., Nutku Y., Sheftel M. B., “Partner symmetries of the complex Monge-Ampère equation yield hyper-Kähler metrics without continuous symmetries”, J. Phys. A: Math. Gen., 36 (2003), 10023–10037, arXiv: math-ph/0305037 | DOI | MR | Zbl
[3] Malykh A. A., Nutku Y., Sheftel M. B., “Partner symmetries and non-invariant solutions of four-dimensional heavenly equations”, J. Phys. A: Math. Gen., 37 (2004), 7527–7545, arXiv: math-ph/0403020 | DOI | MR | Zbl
[4] Malykh A. A., Nutku Y., Sheftel M. B., “Lift of noninvariant solutions of heavenly equations from three to four dimensions and new ultra-hyperbolic metrics”, J. Phys. A: Math. Theor., 40 (2007), 9371–9386, arXiv: 0704.3335 | DOI | MR | Zbl
[5] Sheftel M. B., Malykh A. A., “Lift of invariant to non-invariant solutions of complex Monge–Ampère equations”, J. Nonlinear Math. Phys., 15:3 (2008), 375–385, arXiv: 0802.1463 | DOI | MR
[6] Plebañski J. F., “Some solutions of complex Einstein equations”, J. Math. Phys., 16 (1975), 2395–2402 | DOI | MR
[7] Olver P. J., Applications of Lie groups to differential equations, Graduate Texts in Mathematics, 107, Springer-Verlag, New York, 1986 | MR | Zbl
[8] Doubrov B., Ferapontov E. V., “On the integrability of symplectic Momge–Ampère equations”, J. Geom. Phys., 60 (2010), 1604–1616, arXiv: 0910.3407 | DOI | MR | Zbl
[9] Dunajski M., Mason L. J., “Twistor theory of hyper-Kähler metrics with hidden symmetries”, J. Math. Phys., 44 (2003), 3430–3454, arXiv: math.DG/0301171 | DOI | MR | Zbl
[10] Griffiths P., Harris J., Principles of algebraic geometry, Wiley Sons, Inc., New York, 1994 | MR
[11] Malykh A. A., Sheftel M. B., “General heavenly equation governs anti-self-dual gravity”, J. Phys. A: Math. Theor., 44 (2011), 155201, 11 pp., arXiv: 1011.2479 | DOI | MR | Zbl
[12] Atiyah M. F., Hitchin N. J., Singer I. M., “Self-duality in four-dimensional Riemannian geometry”, Proc. Roy. Soc. London Ser. A, 362 (1978), 425–461 | DOI | MR | Zbl
[13] Dunajski M., Solitons, instantons, and twistors, Oxford Graduate Texts in Mathematics, 19, Oxford University Press, Oxford, 2010 | MR | Zbl
[14] Husain V., “Self-dual gravity as a two dimensional theory and conservation laws”, Classical Quantum Gravity, 11 (1994), 927–937, arXiv: gr-qc/9310003 | DOI | MR