@article{SIGMA_2011_7_a41,
author = {Thomas Curtright},
title = {Potentials {Unbounded} {Below}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a41/}
}
Thomas Curtright. Potentials Unbounded Below. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a41/
[1] Beverton R. J. H., Holt S. J., On the dynamics of exploited fish populations, Fishery Investigations Series II, 19, Ministry of Agriculture, Fisheries and Food, 1957
[2] Collet P., Eckmann J.-P., Iterated maps on the interval as dynamical systems, v. 1, Progress in Physics, Birkhäuser, Boston, Mass., 1980 | MR | Zbl
[3] Curtright T., Veitia A., “Logistic map potentials”, Phys. Lett. A, 375 (2011), 276–282, arXiv: 1005.5030 | DOI | MR
[4] Curtright T., Zachos C., “Evolution profiles and functional equations”, J. Phys. A: Math. Theor., 42 (2009), 485208, 16 pp., arXiv: 0909.2424 | DOI | MR | Zbl
[5] Curtright T., Zachos C., “Chaotic maps, hamiltonian flows and holographic methods”, J. Phys. A: Math. Theor., 43 (2010), 445101, 15 pp., arXiv: 1002.0104 | DOI | MR | Zbl
[6] Curtright T., Zachos C., “Renormalization group functional equations”, Phys. Rev. D, 83 (2011), 065019, 17 pp., arXiv: 1010.5174 | DOI
[7] Devaney R. L., An introduction to chaotic dynamical systems, Addison-Wesley Studies in Nonlinearity, 2nd ed., Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1989 | MR | Zbl
[8] Erdös P., Jabotinsky E., “On analytic iteration”, J. Analyse Math., 8 (1960), 361–376 | DOI | MR
[9] Feigenbaum M. J., “Quantitative universality for a class of nonlinear transformations”, J. Statist. Phys., 19 (1978), 25–52 | DOI | MR | Zbl
[10] Geritz S. A. H., Kisdi E., “On the mechanistic underpinning of discrete-time population models with complex dynamics”, J. Theor. Biology, 228 (2004), 261–269 | DOI | MR
[11] Goldstone J., “Field theories with “superconductor” solutions”, Nuovo Cimento, 19 (1961), 154–164 | DOI | MR | Zbl
[12] Julia G., “Mémoire sur l'itération des fonctions rationnelles”, Journ. de Math. (8), 1 (1918), 47–245 | Zbl
[13] Kuczma M., Choczewski B., Ger R., Iterative functional equations, Encyclopedia of Mathematics and its Applications, 32, Cambridge University Press, Cambridge, 1990 | MR | Zbl
[14] Nambu Y., “Quasi-particles and gauge invariance in the theory of superconductivity”, Phys. Rev., 117 (1960), 648–663 | DOI | MR
[15] Patrascioiu A., “Classical Euclidean solutions”, Phys. Rev. D, 15 (1977), 3051–3053 | DOI
[16] Poincaré H., “Sur une classe étendue de transcendantes uniformes”, C.R. Acad. Sci. Paris, 103 (1886), 862–864
[17] Schröder E., “Über iterierte Funktionen”, Math. Ann., 3 (1870), 296–322 | DOI | MR
[18] Skellam J. G., “Random dispersal in theoretical populations”, Biometrika, 38 (1951), 196–218 | DOI | MR | Zbl