Periodic and Solitary Wave Solutions of Two Component Zakharov–Yajima–Oikawa System, Using Madelung's Approach
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the multiple scales method, the interaction between two bright and one dark solitons is studied. Provided that a long wave-short wave resonance condition is satisfied, the two-component Zakharov–Yajima–Oikawa (ZYO) completely integrable system is obtained. By using a Madelung fluid description, the one-soliton solutions of the corresponding ZYO system are determined. Furthermore, a discussion on the interaction between one bright and two dark solitons is presented. In particular, this problem is reduced to solve a one-component ZYO system in the resonance conditions.
Keywords: dark-bright solitons; nonlinear Schrödinger equation; Zakharov–Yajima–Oikawa system; Madelung fluid approach.
@article{SIGMA_2011_7_a40,
     author = {Anca Visinescu and Dan Grecu and Renato Fedele and Sergio De Nicola},
     title = {Periodic and {Solitary} {Wave} {Solutions} of {Two} {Component} {Zakharov{\textendash}Yajima{\textendash}Oikawa} {System,} {Using} {Madelung's} {Approach}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a40/}
}
TY  - JOUR
AU  - Anca Visinescu
AU  - Dan Grecu
AU  - Renato Fedele
AU  - Sergio De Nicola
TI  - Periodic and Solitary Wave Solutions of Two Component Zakharov–Yajima–Oikawa System, Using Madelung's Approach
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a40/
LA  - en
ID  - SIGMA_2011_7_a40
ER  - 
%0 Journal Article
%A Anca Visinescu
%A Dan Grecu
%A Renato Fedele
%A Sergio De Nicola
%T Periodic and Solitary Wave Solutions of Two Component Zakharov–Yajima–Oikawa System, Using Madelung's Approach
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a40/
%G en
%F SIGMA_2011_7_a40
Anca Visinescu; Dan Grecu; Renato Fedele; Sergio De Nicola. Periodic and Solitary Wave Solutions of Two Component Zakharov–Yajima–Oikawa System, Using Madelung's Approach. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a40/

[1] Kivshar Y., Agrawal G. P., Optical solitons. From fibers to photonic crystals, Academic Press, San Diego, 2003

[2] Tratnik M. V., Sipe J. E., “Bound solitary waves in a birefringent optical fiber”, Phys. Rev. A, 38 (1988), 2011–2017 | DOI

[3] Menyuk C. R., “Nonlinear pulse propagation in birefringent optical fiber”, IEEE J. Quant. Electron., 23 (1987), 174–176 | DOI

[4] Christiansen P. L., Eilbeck J. C., Enolskii V. Z., Kostov N. A., “Quasi-periodic solutions of the coupled nonlinear Schrödinger equations”, Proc. Roy. Soc. London Ser. A, 451 (1995), 685–700, arXiv: hep-th/9410102 | DOI | MR | Zbl

[5] Carretero-Gonzales R., Frantzeskakis D. J., Kevrekidis P. G., “Nonlinear waves in Bose–Einstein condensates: physical relevance and mathematical techniques”, Nonlinearity, 21 (2008), R139–R202, arXiv: 0805.0761 | DOI | MR

[6] Perez-Garcia V. M., Berloff N. G., Kevrekidis P. G., Konotop V. V., Malomed B. A., “Nonlinear phenomena in degenerate quantum gas”, Phys. D, 238 (2009), 1289–1298 | DOI | Zbl

[7] Agrawal G. P., Nonlinear fiber optics, 2nd ed., Academic Press, New York, 1995

[8] Akhmediev N., Ankiewicz A., Solitons: nonlinear pulses and beams, Champan and Hall, London, 1997

[9] Hasegawa A., Kodama Y., Solitons in optical communications, Oxford University Press, 1995 | Zbl

[10] Onorato M., Osborne A. R., Serio M., “Modulational instability in crossing sea states: a possible mechanism”, Phys. Rev. Lett., 96 (2006), 014503, 4 pp. | DOI

[11] Kivshar Y., “Stable vector solitons composed of bright and dark pulses”, Optics Lett., 17 (1992), 1322–1325 | DOI

[12] Sov. Phys. JETP, 35 (1972), 908–914

[13] Yajima N., Oikawa M., “Formation and interaction of sonic-Langmuir solitons-inverse scattering method”, Progr. Theor. Phys., 56 (1976), 1719–1739 | DOI | MR | Zbl

[14] Laedke E. W., Spatschek K. H., “Liapunov stability of generalized Langmuir solitons”, Phys. Fluids, 23 (1980), 44–51 | DOI | MR | Zbl

[15] Grimshaw R. H. J., “Modulation of an internal gravity-wave packet and resonance with mean motion”, Studies in Appl. Math., 56 (1977), 241–266 | MR | Zbl

[16] Benney D. J., “General theory for interactions between short and long waves”, Studies in Appl. Math., 56 (1977), 81–94 | MR | Zbl

[17] Djordjevic V. D., Redekopp L. G., “2-dimensional packets of capillary-gravity waves”, J. Fluid. Mech., 79 (1977), 703–714 | DOI | MR | Zbl

[18] Davydov A. S., Solitons in molecular systems, D. Reidel Publishing Co., Dordrecht, 1985 | MR | Zbl

[19] Dodd R. K., Eilbeck J. C., Gibbon J. D., Morris H. C., Solitons and nonlinear wave equations, Academic Press, Inc., London, New York, 1982 | MR | Zbl

[20] Boiti M., Leon J., Pempinelli F., Spire A., “Resonant two-wave interaction in the Davydov model”, J. Phys. A: Math. Gen., 37 (2004), 4243–4265 | DOI | MR | Zbl

[21] Visinescu A., Grecu D., “Modulational instability and multiple scales analysis of Davydov's model”, Proceedings of Fifth International Conference “Symmetry in Nonlinear Mathematical Physics” (June 23–29, 2003, Kyiv), Proceedings of Institute of Mathematics, 50, eds. A. G. Nikitin, V. M. Boyko, R. O. Popovych and I. A. Yehorchenko, Kyiv, 2004, 1502–1509 | MR | Zbl

[22] Radha R., Senthil Kumar C., Lakshmanan M., Tang X. Y., Lou S. Y., “Periodic and localized solutions of long wave-short wave resonance interaction equation”, J. Phys. A: Math. Gen., 38 (2005), 9649–9663, arXiv: nlin.SI/0604039 | DOI | MR | Zbl

[23] Yurova M., “Application of dressing method for long wave-short wave resonance interaction equation”, J. Math. Phys., 48 (2007), 053516, 7 pp., arXiv: nlin.SI/0612041 | DOI | MR | Zbl

[24] Ohta Y., Maruno K., Oikawa M., “Two-component analogue of two-dimensional long wave-short wave resonance interaction equations: a derivation and solutions”, J. Phys. A: Math. Theor., 40 (2007), 7659–7672, arXiv: ; Maruno K., Ohta Y., Oikawa M., “Note for two-component analogue of two-dimensional long wave-short wave resonance interaction system”, Glasg. Math. J., 51 (2009), 129–135, arXiv: nlin.SI/07020510812.4591 | DOI | MR | Zbl | DOI | MR

[25] Grecu A. T., Grecu D., Visinescu A., “Nonlinear dynamics of a Davydov's model with two independent excitonic modes in complex one-dimensional molecular systems”, Romanian J. Phys. (to appear)

[26] Myrzakulov R., Pashaev O. K., Kholmorodov Kh. T., “Particle-like excitations in many component magnon-phonon systems”, Phys. Scr., 33 (1986), 378–384 | DOI

[27] Whitham G. B., Linear and nonlinear waves, John Wiley Sons, Inc., New York, 1999 | MR

[28] Sov. Phys. JETP, 28 (1969), 277–281

[29] Karpman V. I., Nonlinear waves in dispersive media, International Series of Monographs in Natural Philosophy, 71, Pergamon Press, Oxford, New York, Toronto, Ont., 1975 | MR

[30] Madelung E., “Quantentheorie in hydrodynamischer Form”, Z. Physik, 40 (1926), 332–326

[31] Fedele R., “Envelope solitons versus solitons”, Phys. Scr., 65 (2002), 502–508 | DOI | Zbl

[32] Sov. Phys. JETP, 38 (1974), 248–258 | MR

[33] Grecu D., Visinescu A., Fedele R., De Nicola S., “Periodic and stationary wave solutions of coupled NLS equations”, Romanian J. Phys., 55 (2010), 585–600 | MR

[34] Theoret. and Math. Phys., 160 (2009), 1066–1074 | DOI | MR | Zbl

[35] Byrd P. F., Friedman M. D., Handbook of elliptic integrals for engineering and scientists, Die Grundlehren der mathematischen Wissenschaften, 67, 2nd ed., Springer-Verlag, New York, Heidelberg, 1971 | MR | Zbl