The Quantum 3D Superparticle
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The minimal ($\mathcal N=1$) superparticle in three spacetime dimensions (3D) is quantized. For non-zero mass it describes a spin-$1/4$ semion supermultiplet of “relativistic helicities” $(-1/4,1/4)$. The addition of a parity-violating Lorentz–Wess–Zumino term shifts this to $(\beta -1/4,\beta+1/4)$ for arbitrary $\beta$. For zero mass, in which case spin is not defined, the quantum superparticle describes a supermultiplet of one boson and one fermion.
Keywords: superparticle; semion.
@article{SIGMA_2011_7_a4,
     author = {Luca Mezincescu and Paul K. Townsend},
     title = {The {Quantum} {3D} {Superparticle}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a4/}
}
TY  - JOUR
AU  - Luca Mezincescu
AU  - Paul K. Townsend
TI  - The Quantum 3D Superparticle
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a4/
LA  - en
ID  - SIGMA_2011_7_a4
ER  - 
%0 Journal Article
%A Luca Mezincescu
%A Paul K. Townsend
%T The Quantum 3D Superparticle
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a4/
%G en
%F SIGMA_2011_7_a4
Luca Mezincescu; Paul K. Townsend. The Quantum 3D Superparticle. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a4/

[1] Binegar B., “Relativistic field theories in three dimensions”, J. Math. Phys., 23 (1982), 1511–1517 | DOI | MR

[2] Deser S., Jackiw R., “Statistics without spin: massless $D=3$ systems”, Phys. Lett. B, 263 (1991), 431–436 | DOI | MR

[3] Sorokin D. P., Volkov D. V., “(Anti)commuting spinors and supersymmetric dynamics of semions”, Nuclear Phys. B, 409 (1993), 547–564 | DOI | MR | Zbl

[4] Gorbunov I. V., Kuzenko S. M., Lyakhovich S. L., “$N=1$, $D=3$ superanyons, $OSp(2|2)$ and the deformed Heisenberg algebra”, Phys. Rev. D, 56 (1997), 3744–3755, arXiv: hep-th/9702017 | DOI | MR

[5] Horvathy P. A., Plyushchay M. S., Valenzuela M., “Bosons, fermions and anyons in the plane, and supersymmetry”, Ann. Physics, 325 (2010), 1931–1975, arXiv: 1001.0274 | DOI | MR | Zbl

[6] Volkov D. V., “Quartions in relativistic field theory”, JETP Lett., 49 (1989), 541–543 | MR

[7] Sorokin D., “The Heisenberg algebra and spin”, Fortsch. Phys., 50 (2002), 724–728 | 3.0.CO;2-J class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[8] Witten E., “Supersymmetric index of three-dimensional gauge theory”, The Many Faces of the Superworld, ed. M. Shifman, World Sci. Publ., River Edge, NJ, 2000, 156–184, arXiv: hep-th/9903005 | MR | Zbl

[9] Pedder C., Sonner J., Tong D., “The berry phase of D0-branes”, J. High Energy Phys., 2008:3 (2008), 065, 14 pp., arXiv: 0801.1813 | DOI | MR

[10] Mezincescu L., Townsend P. K., “Anyons from strings”, Phys. Rev. Lett., 105 (2010), 191601, 4 pp., arXiv: 1008.2334 | DOI | MR

[11] Casalbuoni R., “The classical mechanics for Bose–Fermi systems”, Nuovo Cimento A, 33 (1976), 389–431 | DOI | MR

[12] Brink L., Schwarz J. H., “Quantum superspace”, Phys. Lett. B, 100 (1981), 310–312 | DOI | MR

[13] Martin J. L., “Generalized classical dynamics and the ‘classical analogue’ of a Fermi oscillator”, Proc. Roy. Soc. London. Ser. A, 251 (1959), 536–542 | DOI | MR | Zbl

[14] Schonfeld J. F., “A mass term for three-dimensional gauge fields”, Nuclear Phys. B, 185 (1981), 157–171 | DOI

[15] Cortés J. L., Plyushchay M. S., “Anyons as spinning particles”, Internat. J. Modern Phys. A, 11 (1996), 3331–3362, arXiv: hep-th/9505117 | DOI | MR | Zbl

[16] Siegel W., “Hidden local supersymmetry in the supersymmetric particle action”, Phys. Lett. B, 128 (1983), 397–399 | DOI

[17] Mezincescu L., Townsend P. K., “Semionic supersymmetric solitons”, J. Phys. A: Math. Theor., 43 (2010), 465401, 12 pp., arXiv: 1008.2775 | DOI | MR | Zbl

[18] Townsend P. K., “The story of M”, The Future of Theoretical Physics and Cosmology (Cambridge, 2002), eds. G. W. Gibbons, E. P. S. Shellard and S. J. Rankin, Cambridge University Press, Cambridge, 2003, 484–493, arXiv: hep-th/0205309 | MR

[19] Bergshoeff E. A., Hohm O., Rosseel J., Townsend P. K., “On maximal massive 3D supergravity”, Classical Quantum Gravity, 27 (2010), 235012, 24 pp., arXiv: 1007.4075 | DOI | MR | Zbl

[20] Plyushchay M. S., “Operator quantization of massless superparticle”, Internat. J. Modern Phys. A, 6 (1991), 2497–2517 | DOI | MR

[21] Klishevich S. M., Plyushchay M. S., Rausch de Traubenberg M., “Fractional helicity, Lorentz symmetry breaking and anyons”, Nuclear Phys. B, 616 (2001), 419–436 | DOI | MR | Zbl