@article{SIGMA_2011_7_a39,
author = {Tom H. Koornwinder},
title = {On the {Limit} from $q${-Racah} {Polynomials} to {Big} $q${-Jacobi} {Polynomials}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a39/}
}
Tom H. Koornwinder. On the Limit from $q$-Racah Polynomials to Big $q$-Jacobi Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a39/
[6] Askey R., Wilson J., Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc., no. 319, 1985 | MR
[7] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96, 2nd ed., Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl
[8] Koekoek R., Lesky P. A., Swarttouw R. F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl
[9] Koekoek R., Swarttouw R. F., The Askey-scheme of hypergeometric orthogonal polynomials and its $q$-analogue, Report 98-17, Faculty of Technical Mathematics and Informatics, Delft University of Technology, 1998 http://aw.twi.tudelft.nl/~koekoek/askey/
[10] Koornwinder T. H., “The Askey scheme as a four-manifold with corners”, Ramanujan J., 20 (2009), 409–439, arXiv: 0909.2822 | DOI | MR | Zbl
[11] Vinet L., Zhedanov A., “A limit $q=-1$ for big $q$-Jacobi polynomials”, Trans. Amer. Math. Soc. (to appear) , arXiv: 1011.1429