On the Limit from $q$-Racah Polynomials to Big $q$-Jacobi Polynomials
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A limit formula from $q$-Racah polynomials to big $q$-Jacobi polynomials is given which can be considered as a limit formula for orthogonal polynomials. This is extended to a multi-parameter limit with 3 parameters, also involving ($q$-)Hahn polynomials, little $q$-Jacobi polynomials and Jacobi polynomials. Also the limits from Askey–Wilson to Wilson polynomials and from $q$-Racah to Racah polynomials are given in a more conceptual way.
Keywords: Askey scheme; $q$-Askey scheme; $q$-Racah polynomials; big $q$-Jacobi polynomials; multi-parameter limit.
@article{SIGMA_2011_7_a39,
     author = {Tom H. Koornwinder},
     title = {On the {Limit} from $q${-Racah} {Polynomials} to {Big} $q${-Jacobi} {Polynomials}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a39/}
}
TY  - JOUR
AU  - Tom H. Koornwinder
TI  - On the Limit from $q$-Racah Polynomials to Big $q$-Jacobi Polynomials
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a39/
LA  - en
ID  - SIGMA_2011_7_a39
ER  - 
%0 Journal Article
%A Tom H. Koornwinder
%T On the Limit from $q$-Racah Polynomials to Big $q$-Jacobi Polynomials
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a39/
%G en
%F SIGMA_2011_7_a39
Tom H. Koornwinder. On the Limit from $q$-Racah Polynomials to Big $q$-Jacobi Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a39/

[6] Askey R., Wilson J., Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc., no. 319, 1985 | MR

[7] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96, 2nd ed., Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl

[8] Koekoek R., Lesky P. A., Swarttouw R. F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl

[9] Koekoek R., Swarttouw R. F., The Askey-scheme of hypergeometric orthogonal polynomials and its $q$-analogue, Report 98-17, Faculty of Technical Mathematics and Informatics, Delft University of Technology, 1998 http://aw.twi.tudelft.nl/~koekoek/askey/

[10] Koornwinder T. H., “The Askey scheme as a four-manifold with corners”, Ramanujan J., 20 (2009), 409–439, arXiv: 0909.2822 | DOI | MR | Zbl

[11] Vinet L., Zhedanov A., “A limit $q=-1$ for big $q$-Jacobi polynomials”, Trans. Amer. Math. Soc. (to appear) , arXiv: 1011.1429