Essential Parabolic Structures and Their Infinitesimal Automorphisms
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the theory of Weyl structures, we give a natural generalization of the notion of essential conformal structures and conformal Killing fields to arbitrary parabolic geometries. We show that a parabolic structure is inessential whenever the automorphism group acts properly on the base space. As a corollary of the generalized Ferrand–Obata theorem proved by C. Frances, this proves a generalization of the “Lichnérowicz conjecture” for conformal Riemannian, strictly pseudo-convex CR, and quaternionic/octonionic contact manifolds in positive-definite signature. For an infinitesimal automorphism with a singularity, we give a generalization of the dictionary introduced by Frances for conformal Killing fields, which characterizes (local) essentiality via the so-called holonomy associated to a singularity of an infinitesimal automorphism.
Keywords: essential structures; infinitesimal automorphisms; parabolic geometry; Lichnérowicz conjecture.
@article{SIGMA_2011_7_a38,
     author = {Jesse Alt},
     title = {Essential {Parabolic} {Structures} and {Their} {Infinitesimal} {Automorphisms}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a38/}
}
TY  - JOUR
AU  - Jesse Alt
TI  - Essential Parabolic Structures and Their Infinitesimal Automorphisms
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a38/
LA  - en
ID  - SIGMA_2011_7_a38
ER  - 
%0 Journal Article
%A Jesse Alt
%T Essential Parabolic Structures and Their Infinitesimal Automorphisms
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a38/
%G en
%F SIGMA_2011_7_a38
Jesse Alt. Essential Parabolic Structures and Their Infinitesimal Automorphisms. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a38/

[1] Alekseevski D. V., “Groups of conformal transformations of Riemannian spaces”, Sb. Math., 18 (1972), 285–301 | DOI | MR

[2] Asymptotically symmetric Einstein metrics, SMF/AMS Texts and Monographs, 13, American Mathematical Society, Providence, 2006 | MR | MR | Zbl | Zbl

[3] Čap A., “Infinitesimal automorphisms and deformations of parabolic geometries”, J. Eur. Math. Soc., 10 (2008), 415–437, arXiv: math.DG/0508535 | DOI | MR

[4] Čap A., Slovák J., “Weyl structures for parabolic geometries”, Math. Scand., 93 (2003), 53–90, arXiv: math.DG/0001166 | MR | Zbl

[5] Čap A., Slovák J., Parabolic geometries. I Background and general theory, Mathematical Surveys and Monographs, 154, American Mathematical Society, Providence, RI, 2009 | MR | Zbl

[6] Duistermaat J. J., Kolk J. A. C., Lie groups, Universitext, Springer-Verlag, Berlin, 2000 | MR | Zbl

[7] Ferrand J., “The action of conformal transformations on a Riemannian manifold”, Math. Ann., 304 (1996), 277–291 | DOI | MR | Zbl

[8] A Ferrand–Obata theorem for rank one parabolic geometries, arXiv: math.DG/0608537 | DOI | MR | Zbl

[9] Frances C., “Essential conformal structures in Riemannian and Lorentzian geometry”, Recent Developments in Pseudo-Riemannian Geometry, ESI Lect. Math. Phys., Eur. Math. Soc., Zürich, 2008, 231–260 | MR | Zbl

[10] Frances C., Local dynamics of conformal vector fields, arXiv: 0909.0044

[11] Gover A. R., “Laplacian operators and $Q$-curvature of conformally Einstein manifolds”, Math. Ann., 336 (2006), 311–334, arXiv: math.DG/0506037 | DOI | MR | Zbl

[12] Ivanov S., Vassilev D., “Conformal quaternionic contact curvature and the local sphere theorem”, J. Math. Pures Appl. (9), 93 (2010), 277–307, arXiv: 0707.1289 | DOI | MR | Zbl

[13] Schoen R., “On the conformal and CR automorphism groups”, Geom. Funct. Anal., 5 (1995), 464–481 | DOI | MR | Zbl

[14] Webster S. M., “On the transformation group of a real hypersurface”, Trans. Amer. Math. Soc., 231 (1977), 179–190 | DOI | MR | Zbl