@article{SIGMA_2011_7_a37,
author = {Claudia Chanu and Luca Degiovanni and Giovanni Rastelli},
title = {First {Integrals} of {Extended} {Hamiltonians} in $n+1$ {Dimensions} {Generated} by {Powers} of an {Operator}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a37/}
}
TY - JOUR AU - Claudia Chanu AU - Luca Degiovanni AU - Giovanni Rastelli TI - First Integrals of Extended Hamiltonians in $n+1$ Dimensions Generated by Powers of an Operator JO - Symmetry, integrability and geometry: methods and applications PY - 2011 VL - 7 UR - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a37/ LA - en ID - SIGMA_2011_7_a37 ER -
%0 Journal Article %A Claudia Chanu %A Luca Degiovanni %A Giovanni Rastelli %T First Integrals of Extended Hamiltonians in $n+1$ Dimensions Generated by Powers of an Operator %J Symmetry, integrability and geometry: methods and applications %D 2011 %V 7 %U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a37/ %G en %F SIGMA_2011_7_a37
Claudia Chanu; Luca Degiovanni; Giovanni Rastelli. First Integrals of Extended Hamiltonians in $n+1$ Dimensions Generated by Powers of an Operator. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a37/
[1] Borisov A. V., Kilin A. A., Mamaev I. S., “Multiparticle systems. The algebra of integrals and integrable cases”, Regul. Chaotic Dyn., 14 (2009), 18–41 | DOI | MR
[2] Borisov A. V., Kilin A. A., Mamaev I. S., “Superintegrable system on a sphere with the integral of higher degree”, Regul. Chaotic Dyn., 14 (2009), 615–620 | DOI | MR
[3] Cariñena J. F., Rañada M. F., Santander M., “Central potentials on spaces of constant curvature: the Kepler problem on the two-dimensional sphere $S^2$ and the hyperbolic plane $H^2$”, J. Math. Phys., 46 (2005), 052702, 25 pp., arXiv: math-ph/0504016 | DOI | MR | Zbl
[4] Chanu C., Degiovanni L., Rastelli G., “Superintegrable three-body systems on the line”, J. Math. Phys., 49 (2008), 112901, 10 pp., arXiv: 0802.1353 | DOI | MR | Zbl
[5] Chanu C., Degiovanni L., Rastelli G., “Polynomial constants of motion for Calogero-type systems in three dimensions”, J. Math. Phys., 52 (2011), 032903, 7 pp., arXiv: 1002.2735 | DOI | MR
[6] Cochran C., McLenaghan R. G., Smirnov R. G., Equivalence problem for the orthogonal webs on the sphere, arXiv: 1009.4244
[7] Kalnins E. G., Separation of variables for Riemannian spaces of constant curvature, Pitman Monographs and Surveys in Pure and Applied Mathematics, 28, Longman Scientific Technical, Harlow; John Wiley Sons, Inc., New York, 1986 | MR | Zbl
[8] Kalnins E. G., Kress J. M., Miller W. Jr., “Tools for verifying classical and quantum superintegrability”, SIGMA, 6 (2010), 066, 23 pp., arXiv: 1006.0864 | DOI | MR | Zbl
[9] Kalnins E. G., Kress J. M., Miller W. Jr., “Families of classical subgroup separable superintegrable systems”, J. Phys. A: Math. Theor., 43 (2010), 092001, 8 pp., arXiv: 0912.3158 | DOI | MR | Zbl
[10] Kalnins E. G., Kress J. M., Miller W. Jr., “Second order superintegrable systems in conformally flat spaces. II. The classical two-dimensional Stäckel transform”, J. Math. Phys., 46 (2005), 053510, 15 pp. | DOI | MR | Zbl
[11] Kalnins E. G., Miller W. Jr., Pogosyan G. S., “Superintegrability and higher order constants for classical and quantum systems”, Phys. Atomic Nuclei (to appear) , arXiv: 0912.2278 | MR
[12] Maciejewski A. J., Przybylska M., Yoshida H., “Necessary conditions for super-integrability of a certain family of potentials in constant curvature spaces”, J. Phys. A: Math. Theor., 43 (2010), 382001, 15 pp., arXiv: 1004.3854 | DOI | MR | Zbl
[13] Rañada M. F., Santander M., “Superintegrable systems on the two- dimensional sphere $S^2$ and the hyperbolic plane $H^2$”, J. Math. Phys., 40 (1999), 5026–5057 | DOI | MR
[14] Sergyeyev A., Blaszak M., “Generalized Stäckel transform and reciprocal transformations for finite-dimensional integrable systems”, J. Phys. A: Math. Theor., 41 (2008), 105205, 20 pp., arXiv: 0706.1473 | DOI | MR | Zbl
[15] Tremblay F., Turbiner V. A., Winternitz P., “An infinite family of solvable and integrable quantum systems on a plane”, J. Phys. A: Math. Theor., 42 (2009), 242001, 10 pp. | DOI | MR | Zbl
[16] Tremblay F., Turbiner A. V., Winternitz P., “Periodic orbits for an infinite family of classical superintegrable systems”, J. Phys. A: Math. Theor., 43 (2010), 015202, 14 pp., arXiv: 0910.0299 | DOI | MR | Zbl
[17] Tsiganov A. V., “Leonard Euler: addition theorems and superintegrable systems”, Regul. Chaotic Dyn., 14 (2009), 389–406, arXiv: 0810.1100 | DOI | MR