First Integrals of Extended Hamiltonians in $n+1$ Dimensions Generated by Powers of an Operator
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe a procedure to construct polynomial in the momenta first integrals of arbitrarily high degree for natural Hamiltonians $H$ obtained as one-dimensional extensions of natural (geodesic) $n$-dimensional Hamiltonians $L$. The Liouville integrability of $L$ implies the (minimal) superintegrability of $H$. We prove that, as a consequence of natural integrability conditions, it is necessary for the construction that the curvature of the metric tensor associated with $L$ is constant. As examples, the procedure is applied to one-dimensional $L$, including and improving earlier results, and to two and three-dimensional $L$, providing new superintegrable systems.
Keywords: superintegrable Hamiltonian systems; polynomial first integrals; constant curvature; Hessian tensor.
@article{SIGMA_2011_7_a37,
     author = {Claudia Chanu and Luca Degiovanni and Giovanni Rastelli},
     title = {First {Integrals} of {Extended} {Hamiltonians} in $n+1$ {Dimensions} {Generated} by {Powers} of an {Operator}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a37/}
}
TY  - JOUR
AU  - Claudia Chanu
AU  - Luca Degiovanni
AU  - Giovanni Rastelli
TI  - First Integrals of Extended Hamiltonians in $n+1$ Dimensions Generated by Powers of an Operator
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a37/
LA  - en
ID  - SIGMA_2011_7_a37
ER  - 
%0 Journal Article
%A Claudia Chanu
%A Luca Degiovanni
%A Giovanni Rastelli
%T First Integrals of Extended Hamiltonians in $n+1$ Dimensions Generated by Powers of an Operator
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a37/
%G en
%F SIGMA_2011_7_a37
Claudia Chanu; Luca Degiovanni; Giovanni Rastelli. First Integrals of Extended Hamiltonians in $n+1$ Dimensions Generated by Powers of an Operator. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a37/

[1] Borisov A. V., Kilin A. A., Mamaev I. S., “Multiparticle systems. The algebra of integrals and integrable cases”, Regul. Chaotic Dyn., 14 (2009), 18–41 | DOI | MR

[2] Borisov A. V., Kilin A. A., Mamaev I. S., “Superintegrable system on a sphere with the integral of higher degree”, Regul. Chaotic Dyn., 14 (2009), 615–620 | DOI | MR

[3] Cariñena J. F., Rañada M. F., Santander M., “Central potentials on spaces of constant curvature: the Kepler problem on the two-dimensional sphere $S^2$ and the hyperbolic plane $H^2$”, J. Math. Phys., 46 (2005), 052702, 25 pp., arXiv: math-ph/0504016 | DOI | MR | Zbl

[4] Chanu C., Degiovanni L., Rastelli G., “Superintegrable three-body systems on the line”, J. Math. Phys., 49 (2008), 112901, 10 pp., arXiv: 0802.1353 | DOI | MR | Zbl

[5] Chanu C., Degiovanni L., Rastelli G., “Polynomial constants of motion for Calogero-type systems in three dimensions”, J. Math. Phys., 52 (2011), 032903, 7 pp., arXiv: 1002.2735 | DOI | MR

[6] Cochran C., McLenaghan R. G., Smirnov R. G., Equivalence problem for the orthogonal webs on the sphere, arXiv: 1009.4244

[7] Kalnins E. G., Separation of variables for Riemannian spaces of constant curvature, Pitman Monographs and Surveys in Pure and Applied Mathematics, 28, Longman Scientific Technical, Harlow; John Wiley Sons, Inc., New York, 1986 | MR | Zbl

[8] Kalnins E. G., Kress J. M., Miller W. Jr., “Tools for verifying classical and quantum superintegrability”, SIGMA, 6 (2010), 066, 23 pp., arXiv: 1006.0864 | DOI | MR | Zbl

[9] Kalnins E. G., Kress J. M., Miller W. Jr., “Families of classical subgroup separable superintegrable systems”, J. Phys. A: Math. Theor., 43 (2010), 092001, 8 pp., arXiv: 0912.3158 | DOI | MR | Zbl

[10] Kalnins E. G., Kress J. M., Miller W. Jr., “Second order superintegrable systems in conformally flat spaces. II. The classical two-dimensional Stäckel transform”, J. Math. Phys., 46 (2005), 053510, 15 pp. | DOI | MR | Zbl

[11] Kalnins E. G., Miller W. Jr., Pogosyan G. S., “Superintegrability and higher order constants for classical and quantum systems”, Phys. Atomic Nuclei (to appear) , arXiv: 0912.2278 | MR

[12] Maciejewski A. J., Przybylska M., Yoshida H., “Necessary conditions for super-integrability of a certain family of potentials in constant curvature spaces”, J. Phys. A: Math. Theor., 43 (2010), 382001, 15 pp., arXiv: 1004.3854 | DOI | MR | Zbl

[13] Rañada M. F., Santander M., “Superintegrable systems on the two- dimensional sphere $S^2$ and the hyperbolic plane $H^2$”, J. Math. Phys., 40 (1999), 5026–5057 | DOI | MR

[14] Sergyeyev A., Blaszak M., “Generalized Stäckel transform and reciprocal transformations for finite-dimensional integrable systems”, J. Phys. A: Math. Theor., 41 (2008), 105205, 20 pp., arXiv: 0706.1473 | DOI | MR | Zbl

[15] Tremblay F., Turbiner V. A., Winternitz P., “An infinite family of solvable and integrable quantum systems on a plane”, J. Phys. A: Math. Theor., 42 (2009), 242001, 10 pp. | DOI | MR | Zbl

[16] Tremblay F., Turbiner A. V., Winternitz P., “Periodic orbits for an infinite family of classical superintegrable systems”, J. Phys. A: Math. Theor., 43 (2010), 015202, 14 pp., arXiv: 0910.0299 | DOI | MR | Zbl

[17] Tsiganov A. V., “Leonard Euler: addition theorems and superintegrable systems”, Regul. Chaotic Dyn., 14 (2009), 389–406, arXiv: 0810.1100 | DOI | MR