@article{SIGMA_2011_7_a36,
author = {Mihai Visinescu},
title = {Covariant {Approach} of the {Dynamics} of {Particles} in {External} {Gauge} {Fields,} {Killing} {Tensors} and {Quantum}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a36/}
}
TY - JOUR AU - Mihai Visinescu TI - Covariant Approach of the Dynamics of Particles in External Gauge Fields, Killing Tensors and Quantum JO - Symmetry, integrability and geometry: methods and applications PY - 2011 VL - 7 UR - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a36/ LA - en ID - SIGMA_2011_7_a36 ER -
%0 Journal Article %A Mihai Visinescu %T Covariant Approach of the Dynamics of Particles in External Gauge Fields, Killing Tensors and Quantum %J Symmetry, integrability and geometry: methods and applications %D 2011 %V 7 %U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a36/ %G en %F SIGMA_2011_7_a36
Mihai Visinescu. Covariant Approach of the Dynamics of Particles in External Gauge Fields, Killing Tensors and Quantum. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a36/
[1] Benenti S., Intrinsic characterization of the variable separation in the Hamilton–Jacobi equation,, J. Math. Phys., 38 (1997), 6578–6602 | DOI | MR | Zbl
[2] Yano K., Some remarks on tensor fields and curvature,, Ann. of Math. (2), 55 (1952), 328–346 | DOI | MR
[3] Gibbons G.W., Rietdijk R.H., van Holten J.W., SUSY in the sky,, Nuclear Phys. B, 404 (1993), 42–64, arXiv: hep-th/9303112 | DOI | MR | Zbl
[4] Carter B., McLenaghan R.G., Generalized total angular momentum operator for the Dirac equation in curved space-time,, Phys. Rev. D, 19 (1979), 1093–1097 | DOI | MR
[5] Cariglia M., Quantum mechanics of Yano tensors: Dirac equation in curved spacetime,, Classical Quantum Gravity, 21 (2004), 1051–1077, arXiv: hep-th/0305153 | DOI | MR | Zbl
[6] Frolov V.P., Hidden symmetries of higher-dimensional black hole spacetimes,, Progr. Theor. Phys. Suppl., 2008, no. 172, 210–219, arXiv: arXiv:0712.4157 | DOI | Zbl
[7] Ianuş S., Visinescu M., Vîlcu G.-E., Conformal Killing–Yano tensors on manifolds with mixed 3-structures,, SIGMA, 5 (2009), 022, 12 pp., arXiv: arXiv:0902.3968 | DOI | MR | Zbl
[8] van Holten J.W., Covariant Hamiltonian dynamics,, Phys. Rev. D, 75 (2007), 025027, 9 pp., arXiv: hep-th/0612216 | DOI | MR
[9] Carter B., Separability of the Killing–Maxwell system underlying the generalized singular momentum constant in the Kerr–Newman black hole metrics,, J. Math. Phys., 28 (1987), 1535–1538 | DOI | MR | Zbl
[10] Horváthy P.A., Ngome J.-P., Conserved quantities in anon-abelian monopole field,, Phys. Rev. D, 79 (2009), 127701, 4 pp., arXiv: arXiv:0902.0273 | DOI | MR
[11] Ngome J.-P., Curved manifolds with conserved Runge–Lenz vectors,, J. Math. Phys., 50 (2009), 122901, 13 pp., arXiv: arXiv:0908.1204 | DOI | MR | Zbl
[12] Visinescu M., Higher order first integrals of motion in a gauge covariant Hamiltonian framework,, Modern Phys. Lett. A, 25 (2010), 341–350, arXiv: arXiv:0910.3474 | DOI | MR | Zbl
[13] Igata T., Koike T., Isihara H., Constants of motion for constrained hamiltonian systems,, arXiv: arXiv:1005.1815
[14] Crampin M., Hidden symmetries and Killing tensors,, Rep. Math. Phys., 20 (1984), 31–40 | DOI | MR | Zbl
[15] Vaman D., Visinescu M., Spinning particles in Taub-NUT space,, Phys. Rev. D, 57 (1998), 3790–3793, arXiv: hep-th/9707175 | DOI | MR
[16] Marquette I., Generalized Kaluza–Klein monopole, quadratic algebras and ladder operators,, arXiv: arXiv:1103.0374 | MR
[17] Iwai T., Katayama N., On extended Taub-NUT metrics,, J. Geom. Phys., 12 (1993), 55–75 | DOI | MR | Zbl
[18] Kashiwada T., On conformal Killing tensor, Natur. Sci. Rep. Ochanomizu Univ., 19 (1968), 67–74 | MR | Zbl
[19] Kress J., Generalized conformal Killing–Yano tensors: applications to electrodynamics, PhD Thesis, University of Newcastle, 1997.
[20] Floyd R., The dynamics of Kerr fields, PhD Thesis, London University, 1973.
[21] Penrose R., Naked singularities,, Ann. New York Acad. Sci., 224 (1973), 125–134 | DOI | Zbl
[22] Gibbons G.W., Ruback R.J., The hidden symmetries of multi-center metrics,, Comm. Math. Phys., 115 (1988), 267–300 | DOI | MR | Zbl
[23] Visinescu M., Generalized Taub-NUT metrics and Killing–Yano tensors,, J. Phys. A: Math. Gen., 33 (2000), 4383–4391, arXiv: hep-th/9911126 | DOI | MR | Zbl
[24] Jezierski J., CYK tensors, Maxwell field and conserved quantities for the spin-2 field,, Classical Quantum Gravity, 19 (2002), 4405–4429, arXiv: gr-qc/0211039 | DOI | MR | Zbl
[25] Frolov V.P., Hidden symmetries and black holes,, J. Phys. Conf. Ser., 189 (2009), 012015, 13 pp., arXiv: arXiv:0901.1472 | DOI
[26] Hughston L.P., Penrose R., Sommers P., Walker M., On a quadratic first integral for the charged particle orbits in the charged Kerr solution,, Comm. Math. Phys., 27 (1972), 303–308 | DOI | MR
[27] Tanimoto M., The role of Killing–Yano tensors in supersymmetric mechanics on a curved manifold,, Nuclear Phys. B, 442 (1995), 549–560, arXiv: gr-qc/9501006 | DOI | MR | Zbl
[28] McLenaghan R.G., Spindel Ph., Quantum numbers for Dirac spinor fields on a curved space-time,, Phys. Rev. D, 20 (1979), 409–413 | DOI | MR
[29] Carter B., Global structure of the Kerr family of gravitational fields,, Phys. Rev., 174 (1968), 1559–1571 | DOI | Zbl
[30] Jezierski J., Łukasik M., Conformal Yano–Killing tensor for the Kerr metric and conserved quantities,, Classical Quantum Gravity, 23 (2006), 2895–2918, arXiv: gr-qc/0510090 | DOI | MR | Zbl
[31] Visinescu M., Hidden conformal symmetries and quantum gravitational anomalies,, Europhys. Lett. EPL, 90 (2010), 41002, 4 pp. | DOI
[32] Carter B., Killing tensors quantum numbers and conserved currents in curved spaces,, Phys. Rev. D, 16 (1977), 3395–3414 | DOI | MR
[33] Benn I.M., Charlton P., Dirac symmetry operators from conformal Killing–Yano tensors,, Classical Quantum Gravity, 14 (1997), 1037–1042, arXiv: gr-qc/9612011 | DOI | MR | Zbl
[34] Cariglia M., Krtouš P., Kubizňák D., Commuting symmetry operators of the Dirac equation, Killing–Yano and Schouten–Nijenhuis brackets,, arXiv: arXiv:1102.4501
[35] Kamran N., McLenaghan R.G., Symmetry operators for the neutrino and Dirac fields on curved spacetime,, Phys. Rev. D, 30 (1984), 357–362 | DOI | MR | Zbl
[36] van Holten J.W., Waldron A., Peeters K., An index theorem for non-standard Dirac operators,, Classical Quantum Gravity, 16 (1999), 2537–2544, arXiv: hep-th/9901163 | DOI | MR | Zbl
[37] Moroianu S., Visinescu M., Finiteness of the $L^2$-index of the Dirac operator on generalized Euclidean Taub-NUT metrics,, J. Phys. A: Math. Gen., 39 (2006), 6575–6581, arXiv: math-ph/0511025 | DOI | MR
[38] Moroianu A., Moroianu S., The Dirac operator on generalized Taub-NUT space,, arXiv: arXiv:1003.5364
[39] Visinescu M., Integrable systems and higher rank Killing tensors, in preparation.
[40] Houri T., Kubizňák D., Warnick C.M., Yasui Y., Generalized hidden symmetries and the Kerr–Sen black hole,, J. High Energy Phys., 2010:7 (2010), 055, 33 pp., arXiv: arXiv:1004.1032 | DOI | MR