@article{SIGMA_2011_7_a33,
author = {Thomas Leuther and Fabian Radoux},
title = {Natural and {Projectively} {Invariant} {Quantizations} on {Supermanifolds}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a33/}
}
Thomas Leuther; Fabian Radoux. Natural and Projectively Invariant Quantizations on Supermanifolds. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a33/
[1] Bordemann M., Sur l'existence d'une prescription d'ordre naturelle projectivement invariante, arXiv: math.DG/0208171
[2] Bouarroudj S., “Projectively equivariant quantization map”, Lett. Math. Phys., 51 (2000), 265–274, arXiv: math.DG/0003054 | DOI | MR | Zbl
[3] Deligne P., Etingof P., Freed D. S., Jeffrey L. C., Kazhdan D., Morgan J. W., Morrison D. R., Witten E. (eds.), Quantum fields and strings: a course for mathematicians, v. 1, 2, American Mathematical Society, Providence, RI, 1999
[4] Gargoubi Kh., Ovsienko V., “Modules of differential operators on the line”, Funct. Anal. Appl., 35:1 (2001), 13–18 | DOI | MR | Zbl
[5] Dirac P. A. M., “The fundamental equations of quantum mechanics”, Proc. Roy. Soc. London, 109 (1925), 642–653 | DOI | Zbl
[6] George J., Projective connections and Schwarzian derivatives for supermanifolds, and Batalin–Vilkovisky operators, arXiv: 0909.5419
[7] Kirillov A. A., “Geometric quantization”, Current Problems in Mathematics. Fundamental Directions, Itogi Nauki i Tekhniki, 4, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1985, 141–178 | MR
[8] Kolář I., Michor P. W., Slovák J., Natural operations in differential geometry, Springer-Verlag, Berlin, 1993 | MR
[9] Kosmann-Schwarzbach Y., Monterde J., “Divergence operators and odd Poisson brackets”, Ann. Inst. Fourier (Grenoble), 52 (2002), 419–456, arXiv: math.QA/0002209 | DOI | MR | Zbl
[10] Lecomte P. B. A., Ovsienko V. Yu., “Projectively equivariant symbol calculus”, Lett. Math. Phys., 49 (1999), 173–196, arXiv: math.DG/9809061 | DOI | MR | Zbl
[11] Lecomte P. B. A., Ovsienko V. Yu., “Cohomology of the vector fields lie algebra and modules of differential operators on a smooth manifold”, Compositio Math., 124 (2000), 95–110, arXiv: math.DG/9905058 | DOI | MR | Zbl
[12] Lecomte P. B. A., “Towards projectively equivariant quantization”, Progr. Theoret. Phys. Suppl., 2001, no. 144, 125–132 | DOI | MR | Zbl
[13] Leĭtes D. A., “Introduction to the theory of supermanifolds”, Russ. Math. Surveys, 35:1 (1980), 1–64 | DOI | MR
[14] Manin Yu. I., Gauge field theory and complex geometry, Grundlehren der Mathematischen Wissenschaften, 289, 2nd ed., Springer-Verlag, Berlin, 1997 | MR | Zbl
[15] Mathonet P., Radoux F., Projectively equivariant quantizations over the superspace ${\mathbb{R}}^{p|q}$, arXiv: 1003.3320
[16] Woodhouse N. M. J., Geometric quantization, Oxford Mathematical Monographs, Oxford Science Publications, 2nd ed., The Clarendon Press, New York; Oxford University Press, 1992 | MR