Natural and Projectively Invariant Quantizations on Supermanifolds
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The existence of a natural and projectively invariant quantization in the sense of P. Lecomte [Progr. Theoret. Phys. Suppl. (2001), no. 144, 125–132] was proved by M. Bordemann [math.DG/0208171], using the framework of Thomas–Whitehead connections. We extend the problem to the context of supermanifolds and adapt M. Bordemann's method in order to solve it. The obtained quantization appears as the natural globalization of the $\mathfrak{pgl}({n+1|m})$-equivariant quantization on ${\mathbb{R}}^{n|m}$ constructed by P. Mathonet and F. Radoux in [arXiv:1003.3320]. Our quantization is also a prolongation to arbitrary degree symbols of the projectively invariant quantization constructed by J. George in [arXiv:0909.5419] for symbols of degree two.
Keywords: supergeometry; differential operators; projective invariance; quantization maps.
@article{SIGMA_2011_7_a33,
     author = {Thomas Leuther and Fabian Radoux},
     title = {Natural and {Projectively} {Invariant} {Quantizations} on {Supermanifolds}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a33/}
}
TY  - JOUR
AU  - Thomas Leuther
AU  - Fabian Radoux
TI  - Natural and Projectively Invariant Quantizations on Supermanifolds
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a33/
LA  - en
ID  - SIGMA_2011_7_a33
ER  - 
%0 Journal Article
%A Thomas Leuther
%A Fabian Radoux
%T Natural and Projectively Invariant Quantizations on Supermanifolds
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a33/
%G en
%F SIGMA_2011_7_a33
Thomas Leuther; Fabian Radoux. Natural and Projectively Invariant Quantizations on Supermanifolds. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a33/

[1] Bordemann M., Sur l'existence d'une prescription d'ordre naturelle projectivement invariante, arXiv: math.DG/0208171

[2] Bouarroudj S., “Projectively equivariant quantization map”, Lett. Math. Phys., 51 (2000), 265–274, arXiv: math.DG/0003054 | DOI | MR | Zbl

[3] Deligne P., Etingof P., Freed D. S., Jeffrey L. C., Kazhdan D., Morgan J. W., Morrison D. R., Witten E. (eds.), Quantum fields and strings: a course for mathematicians, v. 1, 2, American Mathematical Society, Providence, RI, 1999

[4] Gargoubi Kh., Ovsienko V., “Modules of differential operators on the line”, Funct. Anal. Appl., 35:1 (2001), 13–18 | DOI | MR | Zbl

[5] Dirac P. A. M., “The fundamental equations of quantum mechanics”, Proc. Roy. Soc. London, 109 (1925), 642–653 | DOI | Zbl

[6] George J., Projective connections and Schwarzian derivatives for supermanifolds, and Batalin–Vilkovisky operators, arXiv: 0909.5419

[7] Kirillov A. A., “Geometric quantization”, Current Problems in Mathematics. Fundamental Directions, Itogi Nauki i Tekhniki, 4, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1985, 141–178 | MR

[8] Kolář I., Michor P. W., Slovák J., Natural operations in differential geometry, Springer-Verlag, Berlin, 1993 | MR

[9] Kosmann-Schwarzbach Y., Monterde J., “Divergence operators and odd Poisson brackets”, Ann. Inst. Fourier (Grenoble), 52 (2002), 419–456, arXiv: math.QA/0002209 | DOI | MR | Zbl

[10] Lecomte P. B. A., Ovsienko V. Yu., “Projectively equivariant symbol calculus”, Lett. Math. Phys., 49 (1999), 173–196, arXiv: math.DG/9809061 | DOI | MR | Zbl

[11] Lecomte P. B. A., Ovsienko V. Yu., “Cohomology of the vector fields lie algebra and modules of differential operators on a smooth manifold”, Compositio Math., 124 (2000), 95–110, arXiv: math.DG/9905058 | DOI | MR | Zbl

[12] Lecomte P. B. A., “Towards projectively equivariant quantization”, Progr. Theoret. Phys. Suppl., 2001, no. 144, 125–132 | DOI | MR | Zbl

[13] Leĭtes D. A., “Introduction to the theory of supermanifolds”, Russ. Math. Surveys, 35:1 (1980), 1–64 | DOI | MR

[14] Manin Yu. I., Gauge field theory and complex geometry, Grundlehren der Mathematischen Wissenschaften, 289, 2nd ed., Springer-Verlag, Berlin, 1997 | MR | Zbl

[15] Mathonet P., Radoux F., Projectively equivariant quantizations over the superspace ${\mathbb{R}}^{p|q}$, arXiv: 1003.3320

[16] Woodhouse N. M. J., Geometric quantization, Oxford Mathematical Monographs, Oxford Science Publications, 2nd ed., The Clarendon Press, New York; Oxford University Press, 1992 | MR