Quantum Integrable Model of an Arrangement of Hyperplanes
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The goal of this paper is to give a geometric construction of the Bethe algebra (of Hamiltonians) of a Gaudin model associated to a simple Lie algebra. More precisely, in this paper a quantum integrable model is assigned to a weighted arrangement of affine hyperplanes. We show (under certain assumptions) that the algebra of Hamiltonians of the model is isomorphic to the algebra of functions on the critical set of the corresponding master function. For a discriminantal arrangement we show (under certain assumptions) that the symmetric part of the algebra of Hamiltonians is isomorphic to the Bethe algebra of the corresponding Gaudin model. It is expected that this correspondence holds in general (without the assumptions). As a byproduct of constructions we show that in a Gaudin model (associated to an arbitrary simple Lie algebra), the Bethe vector, corresponding to an isolated critical point of the master function, is nonzero.
Keywords: Gaudin model; arrangement of hyperplanes.
@article{SIGMA_2011_7_a31,
     author = {Alexander Varchenko},
     title = {Quantum {Integrable} {Model} of an {Arrangement} of {Hyperplanes}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a31/}
}
TY  - JOUR
AU  - Alexander Varchenko
TI  - Quantum Integrable Model of an Arrangement of Hyperplanes
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a31/
LA  - en
ID  - SIGMA_2011_7_a31
ER  - 
%0 Journal Article
%A Alexander Varchenko
%T Quantum Integrable Model of an Arrangement of Hyperplanes
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a31/
%G en
%F SIGMA_2011_7_a31
Alexander Varchenko. Quantum Integrable Model of an Arrangement of Hyperplanes. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a31/

[1] Arnold V. I., Gusein-Zade S. M., Varchenko A. M., Singularities of differentiable maps, v. II, Monographs in Mathematics, 83, Monodromy and asymptotics of integrals, Birkhäuser, Boston, MA, 1988 | MR | Zbl

[2] Babujian H. M., “Off-shell Bethe ansatz equations and $N$-point correlators in the ${\rm SU}(2)$ WZNW theory”, J. Phys. A: Math. Gen., 26 (1993), 6981–6990 | DOI | MR | Zbl

[3] Babujian H. M., Flume R., “Off-shell Bethe ansatz equation for Gaudin magnets and solutions of Knizhnik–Zamolodchikov equations”, Modern Phys. Lett. A, 9 (1994), 2029–2039, arXiv: hep-th/9310110 | DOI | MR | Zbl

[4] Feigin B., Frenkel E., Reshetikhin N., “Gaudin model, Bethe ansatz and critical level”, Comm. Math. Phys., 166 (1994), 29–62, arXiv: hep-th/9402022 | DOI | MR

[5] Feigin B., Frenkel E., Rybnikov L., “Opers with irregular singularity and spectra of the shift of argument subalgebra”, Duke Math. J., 155 (2010), 337–363, arXiv: 0712.1183 | DOI | MR | Zbl

[6] Feigin B., Schechtman V., Varchenko A., “On algebraic equations satisfied by hypergeometric correlators in WZW models. II”, Comm. Math. Phys., 170 (1995), 219–247, arXiv: hep-th/9407010 | DOI | MR | Zbl

[7] Gaudin M., “Diagonalisation d'une classe d'Hamiltoniens de spin”, J. Physique, 37 (1976), 1087–1098 | DOI | MR

[8] Gaudin M., La fonction d'onde de Bethe, Collection du Commissariat l'Érgie Atomique: Série Scientifique, Masson, Paris, 1983 | MR | Zbl

[9] Griffiths Ph., Harris J., Principles of algebraic geometry, John Wiley Sons, Inc., New York, 1994 | MR

[10] Mukhin E., Tarasov V., Varchenko A., “Bethe eigenvectors of higher transfer matrices”, J. Stat. Mech. Theory Exp., 2006:8 (2006), P08002, 44 pp., arXiv: math.QA/0605015 | DOI | MR

[11] Mukhin E., Tarasov V., Varchenko A., “The B. and M. Shapiro conjecture in real algebraic geometry and the Bethe ansatz,”, Ann. of Math. (2), 170 (2009), 863–881, arXiv: math.AG/0512299 | DOI | MR | Zbl

[12] Mukhin E., Tarasov V., Varchenko A., “Schubert calculus and representations of the general linear group”, J. Amer. Math. Soc., 22 (2009), 909–940, arXiv: 0711.4079 | DOI | MR | Zbl

[13] Mukhin E., Tarasov V., Varchenko A., “Gaudin Hamiltonians generate the Bethe algebra of a tensor power of vector representation of $\frak{gl}_N$”, Algebra i Analiz, 22:3 (2010), 177–190, arXiv: 0904.2131 | MR

[14] Mukhin E., Tarasov V., Varchenko A., Three sides of the geometric Langlands correspondence for $\frak{gl}_N$ Gaudin model and Bethe vector averaging maps, arXiv: 0907.3266

[15] Mukhin E., Tarasov V., Varchenko A., Bethe algebra of the $\frak {gl}_{N+1}$ Gaudin model and algebra of functions on the critical set of the master function, arXiv: 0910.4690 | MR

[16] Mukhin E., Varchenko A., “Norm of a bethe vector and the Hessian of the master function”, Compos. Math., 141 (2005), 1012–1028, arXiv: math.QA/0402349 | DOI | MR | Zbl

[17] Orlik P., Terao H., “The number of critical points of a product of powers of linear functions”, Invent. Math., 120 (1995), 1–14 | DOI | MR | Zbl

[18] Orlik P., Terao H., Arrangements and hypergeometric integrals, MSJ Memoirs, 9, Mathematical Society of Japan, Tokyo, 2001 | MR | Zbl

[19] Reshetikhin N., Varchenko A., “Quasiclassical asymptotics of solutions to the KZ equations”, Geometry, Topology, Physics, Conf. Proc. Lecture Notes Geom. Topology, 4, Int. Press, Cambridge, MA, 1995, 293–322 | MR

[20] Rimányi R., Stevens L., Varchenko A., “Combinatorics of rational functions and Poincaré–Birkhoff–Witt expansions of the canonical $U(n-)$-valued differential form”, Ann. Comb., 9 (2005), 57–74, arXiv: math.CO/0407101 | DOI | MR | Zbl

[21] Silvotti R., “On a conjecture of Varchenko”, Invent. Math., 126 (1996), 235–248, arXiv: alg-geom/9503016 | DOI | MR | Zbl

[22] Schechtman V., Terao H., Varchenko A., “Local systems over complements of hyperplanes and the Kac–Kazhdan conditions for singular vectors”, J. Pure Appl. Algebra, 100 (1995), 93–102, arXiv: hep-th/9411083 | DOI | MR | Zbl

[23] Schechtman V., Varchenko A., “Arrangements of hyperplanes and Lie algebra homology”, Invent. Math., 106 (1991), 139–194 | DOI | MR | Zbl

[24] Talalaev D., Quantization of the Gaudin system, arXiv: hep-th/0404153

[25] Varchenko A., Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups, Advanced Series in Mathematical Physics, 21, World Scientific Publishing Co., Inc., River Edge, NJ, 1995 | MR | Zbl

[26] Varchenko A., “Critical points of the product of powers of linear functions and families of bases of singular vectors”, Compos. Math., 97 (1995), 385–401, arXiv: hep-th/9312119 | MR | Zbl

[27] Varchenko A., “Bethe ansatz for arrangements of hyperplanes and the Gaudin model”, Mosc. Math. J., 6 (2006), 195–210 ; 223–224, arXiv: math.QA/0408001 | MR | Zbl | Zbl

[28] Yuzvinsky S., “Cohomology of the Brieskorn–Orlik–Solomon algebras”, Comm. Algebra, 23 (1995), 5339–5354 | DOI | MR | Zbl

[29] Zaslavsky T., Facing up to arrangements: face-count formulas for partitions of space by hyperplanes, Mem. Amer. Math. Soc., 1, no. 154, 1975 | MR