@article{SIGMA_2011_7_a30,
author = {Ernie G. Kalnins and Jonathan M. Kress and Willard Miller Jr.},
title = {A~Recurrence {Relation} {Approach} to {Higher} {Order} {Quantum} {Superintegrability}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a30/}
}
TY - JOUR AU - Ernie G. Kalnins AU - Jonathan M. Kress AU - Willard Miller Jr. TI - A Recurrence Relation Approach to Higher Order Quantum Superintegrability JO - Symmetry, integrability and geometry: methods and applications PY - 2011 VL - 7 UR - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a30/ LA - en ID - SIGMA_2011_7_a30 ER -
%0 Journal Article %A Ernie G. Kalnins %A Jonathan M. Kress %A Willard Miller Jr. %T A Recurrence Relation Approach to Higher Order Quantum Superintegrability %J Symmetry, integrability and geometry: methods and applications %D 2011 %V 7 %U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a30/ %G en %F SIGMA_2011_7_a30
Ernie G. Kalnins; Jonathan M. Kress; Willard Miller Jr. A Recurrence Relation Approach to Higher Order Quantum Superintegrability. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a30/
[1] Tempesta P., Winternitz P., Harnad J., Miller W., Pogosyan G., Rodriguez M. (eds.), Superintegrability in classical and quantum systems (September 16–21, 2002 Montreal, Canada), CRM Proceedings and Lecture Notes, 37, American Mathematical Society, Providence, RI, 2004 | MR
[2] Eastwood M., Miller W. (eds.), Symmetries and overdetermined systems of partial differential equations (July 17 – August 4, 2006, Minneapolis, MN), The IMA Volumes in Mathematics and its Applications, 144, Springer, New York, 2008 | MR
[3] Kalnins E. G., Kress J. M., Miller W. Jr., “Second-order superintegrable systems in conformally flat spaces. V. Two- and three-dimensional quantum systems”, J. Math. Phys., 47 (2006), 093501, 25 pp. | DOI | MR | Zbl
[4] Kalnins E. G., Kress J. M., Pogosyan G. S., Miller W. Jr., “Completeness of superintegrability in two-dimensional constant-curvature spaces”, J. Phys. A: Math. Gen., 34 (2001), 4705–4720, arXiv: math-ph/0102006 | DOI | MR | Zbl
[5] Daskaloyannis C., Ypsilantis K., “Unified treatment and classification of superintegrable systems with integrals quadratic in momenta on a two dimensional manifold”, J. Math. Phys., 47 (2006), 042904, 38 pp., arXiv: math-ph/0412055 | DOI | MR | Zbl
[6] Kalnins E. G., Kress J. M., Miller W. Jr., “Nondegenerate three-dimensional complex Euclidean superintegrable systems and algebraic varieties”, J. Math. Phys., 48 (2007), 113518, 26 pp., arXiv: 0708.3044 | DOI | MR | Zbl
[7] Kalnins E. G., Miller W. Jr., Post S., “Wilson polynomials and the generic superintegrable system on the 2-sphere”, J. Phys. A: Math. Theor., 40 (2007), 11525–11538 | DOI | MR | Zbl
[8] Kalnins E. G., Miller W. Jr., Post S., “Models for quadratic algebras associated with second order superintegrable systems in 2D”, SIGMA, 4 (2008), 008, 21 pp., arXiv: 0801.2848 | DOI | MR | Zbl
[9] Chanu C., Degiovanni L., Rastelli G., “Superintegrable three-body systems on the line”, J. Math. Phys., 49 (2008), 112901, 10 pp., arXiv: 0802.1353 | DOI | MR | Zbl
[10] Rodríguez M. A., Tempesta P., Winternitz P., “Reduction of superintegrable systems: the anisotropic harmonic oscillator”, Phys. Rev. E, 78 (2008), 046608, 6 pp., arXiv: ; Rodríguez M. A., Tempesta P., Winternitz P., “Symmetry reduction and superintegrable Hamiltonian systems”, J. Phys. Conf. Ser., 175 (2009), 012013, 8 pp., arXiv: 0807.10470906.3396 | DOI | MR | DOI
[11] Verrier P. E., Evans N. W., “A new superintegrable Hamiltonian”, J. Math. Phys., 49 (2008), 022902, 8 pp., arXiv: 0712.3677 | DOI | MR | Zbl
[12] Tremblay F., Turbiner V. A., Winternitz P., “An infinite family of solvable and integrable quantum systems on a plane”, J. Phys. A: Math. Theor., 42 (2009), 242001, 10 pp. | DOI | MR | Zbl
[13] Tremblay F., Turbiner V. A., Winternitz P., “Periodic orbits for an infinite family of classical superintegrable systems”, J. Phys. A: Math. Theor., 43 (2010), 015202, 14 pp., arXiv: 0910.0299 | DOI | MR | Zbl
[14] Quesne C., “Superintegrability of the Tremblay–Turbiner–Winternitz quantum Hamiltonians on a plane for odd $k$”, J. Phys. A: Math. Theor., 43 (2010), 082001, 10 pp., arXiv: 0911.4404 | DOI | MR | Zbl
[15] Tremblay F., Winternitz P., “Third-order superintegrable systems separating in polar coordinates”, J. Phys. A: Math. Theor., 43 (2010), 175206, 17 pp., arXiv: 1002.1989 | DOI | MR | Zbl
[16] Post S., Winternitz P., “An infinite family of superintegrable deformations of the Coulomb potential”, J. Phys. A: Math. Theor., 43 (2010), 222001, 11 pp., arXiv: 1003.5230 | DOI | MR | Zbl
[17] Ballesteros A., Herranz F. J., “Maximal superintegrability of the generalized Kepler–Coulomb system on $N$-dimensional curved spaces”, J. Phys. A: Math. Theor., 42 (2009), 245203, 12 pp., arXiv: 0903.2337 | DOI | MR | Zbl
[18] Kalnins E. G., Miller W. Jr., Post S., “Coupling constant metamorphosis and $N$th order symmetries in classical and quantum mechanics”, J. Phys. A: Math. Theor., 43 (2010), 035202, 20 pp., arXiv: 0908.4393 | DOI | MR | Zbl
[19] Kalnins E. G., Kress J. M., Miller W. Jr., “Families of classical subgroup separable superintegrable systems”, J. Phys. A: Math. Theor., 43 (2010), 092001, 8 pp., arXiv: 0912.3158 | DOI | MR | Zbl
[20] Kalnins E. G., Kress J. M., Miller W. Jr., “Superintegrability and higher order integrals for quantum systems”, J. Phys. A: Math. Theor., 43 (2010), 265205, 21 pp., arXiv: 1002.2665 | DOI | MR | Zbl
[21] Kalnins E. G., Miller W. Jr., Pogosyan G. S., “Superintegrability and higher order constants for classical and quantum systems”, Phys. Atomic Nuclei (to appear) , arXiv: 0912.2278 | MR
[22] Kalnins E. G., Kress J. M., Miller W. Jr., “Tools for verifying classical and quantum superintegrability”, SIGMA, 6 (2010), 066, 23 pp., arXiv: 1006.0864 | DOI | MR | Zbl
[23] Marquette I., “Superintegrability and higher order polynomial algebras”, J. Phys. A: Math. Gen., 43 (2010), 135203, 15 pp., arXiv: 0908.4399 | DOI | MR | Zbl
[24] Marquette I., An infinite family of superintegrable systems with the fifth Painlevé transcendent from higher order ladder operators and supersymmetry, arXiv: 1008.3073
[25] Marquette I., “Supersymmetry as a method of obtaining new superintegrable systems with higher order integrals of motion”, J. Math. Phys., 50 (2009), 122102, 10 pp., arXiv: 0908.1246 | DOI | MR | Zbl
[26] Marquette I., “Construction of classical superintegrable systems with higher integrals of motion from ladder operators”, J. Math. Phys., 51 (2010), 072903, 9 pp., arXiv: 1002.3118 | DOI | MR
[27] Andrews G. E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999 | MR | Zbl
[28] Kalnins E. G., Kress J. M., Miller W. Jr., “Second-order superintegrable systems in conformally flat spaces. I. Two-dimensional classical structure theory”, J. Math. Phys., 46 (2005), 053509, 28 pp. | DOI | MR | Zbl
[29] Kalnins E. G., Miller W. Jr., Post S., Two-variable Wilson polynomials and the generic superintegrable system on the 3-sphere,, arXiv: 1010.3032 | MR
[30] Kalnins E. G., Miller W. Jr., Pogosyan G. S., “Exact and quasi-exact solvability of second-order superintegrable quantum systems. I. Euclidean space preliminaries”, J. Math. Phys., 47 (2006), 033502, 30 pp., arXiv: math-ph/0412035 | DOI | MR | Zbl