@article{SIGMA_2011_7_a3,
author = {Minoru Takahashi},
title = {Correlation {Function} and {Simplified} {TBA} {Equations} for {XXZ} {Chain}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a3/}
}
Minoru Takahashi. Correlation Function and Simplified TBA Equations for XXZ Chain. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a3/
[1] Takahashi M., “Half-filled Hubbard model at low temperature”, J. Phys. C, 10 (1977), 1289–1301 | DOI
[2] Yang C. N., Yang C. P., “Thermodynamics of a one-dimensional system of bosons with repulsive delta-function interaction”, J. Math. Phys., 10 (1969), 1115–1122 | DOI | MR | Zbl
[3] Takahashi M., “One-dimensional Heisenberg model at finite temperature”, Prog. Theor. Phys., 46 (1971), 401–415 | DOI
[4] Gaudin M., “Thermodynamics of the Heisenberg–Ising ring for $\Delta\ge1$”, Phys. Rev. Lett., 26 (1971), 1301–1304 | DOI
[5] Takahashi M., Suzuki M., “One-dimensional anisotropic Heisenberg model at finite temperatures”, Prog. Theor. Phys., 46 (1972), 2187–2209 | DOI
[6] Koma T., “Thermal Bethe-ansatz method for the spin-1/2 XXZ Heisenberg chain”, Prog. Theor. Phys., 81 (1989), 783–809 | DOI | MR
[7] Takahashi M., “Correlation length and free energy of $S=1/2$ XXZ chain in magnetic field”, Phys. Rev. B, 44 (1991), 12382–12394 | DOI
[8] Klümper A., “Thermodynamics of the anisotropic spin-1/2 Heisenberg chain and related quantum chains”, Z. Phys. B, 91 (1993), 507–519, arXiv: cond-mat/9306019 | DOI
[9] Takahashi M., “Simplification of thermodynamic Bethe-ansatz equations”, Physics and Combinatrix (Nagoya, 2000), World Sci. Publ., River Edge, NJ, 2001, 299–304, arXiv: cond-mat/0010486 | MR | Zbl
[10] Takahashi M., Shiroishi M., Klümper A., “Equivalence of TBA and QTM”, J. Phys. A: Math. Gen., 34 (2001), L187–L194, arXiv: cond-mat/0102027 | DOI | MR | Zbl
[11] Shiroishi M., Takahashi M., “Integral equation generates high-temperature expansion of the Heisenberg chain”, Phys. Rev. Lett., 89 (2002), 117201, 4 pp., arXiv: cond-mat/0205180 | DOI
[12] Tsuboi Z., Takahashi M., “Nonlinear integral equations for thermodynamics of the $U_{q}(\widehat{sl(r+1)})$ Perk–Schultz model”, J. Phys. Soc. Japan, 74 (2005), 898–904, arXiv: cond-mat/0412698 | DOI | Zbl
[13] Hulthén L., “Über das Austauschproblem eines Kristalles”, Ark. Mat. Astron. Fys. A, 26 (1938), 1–105
[14] Muramoto N., Takahashi M., “Integrable magnetic model of two chains coupled by four-body interactions”, J. Phys. Soc. Japan, 68 (1999), 2098–2104, arXiv: cond-mat/9902007 | DOI
[15] Jimbo M., Miki K., Miwa T., Nakayashiki A., “Correlation functions of the XXZ model for $\Delta-1$”, Phys. Lett. A, 168 (1992), 256–263, arXiv: hep-th/9205055 | DOI | MR
[16] Nakayashiki A., “Some integral formulas for the solutions of the $sl_2$ dKZ equation with level-4”, Internat. J. Modern Phys. A, 9 (1994), 5673–5687 | DOI | MR | Zbl
[17] Jimbo M., Miwa T., “Quantum KZ equation with $|q|=1$ and correlation functions of the XXZ model in the gapless regime”, J. Phys. A: Math. Gen., 29 (1996), 2923–2958, arXiv: hep-th/9601135 | DOI | MR | Zbl
[18] Kitanine N., Maillet J. M., Terras V., “Correlation functions of the XXZ Heisenberg spin-1/2 chain in a magnetic field”, Nuclear Phys. B, 567 (2000), 554–582, arXiv: math-ph/9907019 | DOI | MR | Zbl
[19] Göhmann F., Klümper A., Seel A., “Integral representations for correlation functions of the XXZ chain at finite temperature”, J. Phys. A: Math. Gen., 37 (2004), 7625–7651, arXiv: hep-th/0405089 | DOI | MR | Zbl
[20] Boos H. E., Korepin V. E., “Quantum spin chains and Riemann zeta function with odd arguments”, J. Phys. A: Math. Gen., 34 (2001), 5311–5316, arXiv: hep-th/0104008 | DOI | MR | Zbl
[21] Boos H. E., Korepin V. E., “Evaluation of integrals representing correlations in XXX Heisenberg spin chain”, MathPhys Odyssey (2001), Prog. Math. Phys., 23, Birkhäuser Boston, Boston, MA, 2002, 65–108, arXiv: hep-th/0105144 | MR | Zbl
[22] Sakai K., Shiroishi M., Nishiyama Y., Takahashi M., “Third-neighbor correlators of a one-dimensional spin-1/2 Heisenberg antiferromagnet”, Phys. Rev. E, 67 (2003), 065101(R), 4 pp., arXiv: cond-mat/0302564 | DOI
[23] Boos H. E., Korepin V. E., Nishiyama Y., Shiroishi M., “Quantum correlations and number theory”, J. Phys. A: Math. Gen., 35 (2002), 4443–4451, arXiv: cond-mat/0202346 | DOI | MR | Zbl
[24] Boos H. E., Korepin V. E., Smirnov F. A., “Emptiness formation probability and quantum Knizhnik–Zamolodchikov equation”, Nuclear Phys. B, 658 (2003), 417–439, arXiv: hep-th/0209246 | DOI | MR | Zbl
[25] Boos H. E., Shiroishi M., Takahashi M., “First principle approach to correlation functions of spin-1/2 Heisenberg chain: fourth-neighbor correlators”, Nuclear Phys. B, 712 (2005), 573–599, arXiv: hep-th/0410039 | DOI | MR | Zbl
[26] Sato J., Shiroishi M., Takahashi M., “Correlation functions of the spin-1/2 anti-ferromagnetic Heisenberg chain: exact calculation via the generating function”, Nuclear Phys. B, 729 (2005), 441–466, arXiv: hep-th/0507290 | DOI | MR | Zbl
[27] Boos H., Jimbo M., Miwa T., Smirnov F., Takeyama Y., “A recursion formula for the correlation functions of an inhomogeneous XXX model”, St. Petersburg Math. J., 17 (2005), 85–117, arXiv: hep-th/0405044 | DOI | MR
[28] Boos H., Jimbo M., Miwa T., Smirnov F., Takeyama Y., “Reduced qKZ equation and correlation functions of the XXZ model”, Comm. Math. Phys., 261 (2006), 245–276, arXiv: hep-th/0412191 | DOI | MR | Zbl
[29] Boos H., Jimbo M., Miwa T., Smirnov F., Takeyama Y., “Traces on the Sklyanin algebra and correlation functions of the eight-vertex model”, J. Phys. A: Math. Gen., 38 (2005), 7629–7659, arXiv: hep-th/0504072 | DOI | MR | Zbl
[30] Boos H., Jimbo M., Miwa T., Smirnov F., Takeyama Y., “Density matrix of a finite sub-chain of the Heisenberg anti-ferromagnet”, Lett. Math. Phys., 75 (2006), 201–208, arXiv: hep-th/0506171 | DOI | MR | Zbl
[31] Kato G., Shiroishi M., Takahashi M., Sakai K., “Next nearest-neighbor correlation functions of the spin-1/2 XXZ chain at critical region”, J. Phys. A: Math. Gen., 36 (2003), L337–L344, arXiv: cond-mat/0304475 | DOI | MR | Zbl
[32] Takahashi M., Kato G., Shiroishi M., “Next nearest-neighbor correlation functions of the spin-1/2 XXZ chain at massive region”, J. Phys. Soc. Japan, 73 (2004), 245–253, arXiv: cond-mat/0308589 | DOI | Zbl
[33] Kato G., Shiroishi M., Takahashi M., Sakai K., “Third-neighbour and other four-point correlation functions of spin-1/2 XXZ chain”, J. Phys. A: Math. Gen., 37 (2004), 5097–5123, arXiv: cond-mat/0402625 | DOI | MR | Zbl
[34] Takahashi M., Thermodynamics of one-dimensional solvable models, Cambridge University Press, Cambridge, 1999 | MR
[35] Lieb E. H., Wu F. Y., “Absence of mott transition in an exact solution of the short-range, one-band model in one dimension”, Phys. Rev. Lett., 20 (1968), 1445–1448 | DOI
[36] Takahashi M., “On the exact ground state energy of Lieb and Wu”, Prog. Theor. Phys., 45 (1971), 756–760 | DOI | MR | Zbl