Supersymmetry Transformations for Delta Potentials
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We make a detailed study of the first and second-order SUSY partners of a one-dimensional free Hamiltonian with a singular perturbation proportional to a Dirac delta function. It is shown that the second-order transformations increase the spectral manipulation possibilities offered by the standard first-order supersymmetric quantum mechanics.
Keywords: first and second-order SUSY; singular potentials.
@article{SIGMA_2011_7_a28,
     author = {David J. Fern\'andez C. and Manuel Gadella and Luis Miguel Nieto},
     title = {Supersymmetry {Transformations} for {Delta} {Potentials}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a28/}
}
TY  - JOUR
AU  - David J. Fernández C.
AU  - Manuel Gadella
AU  - Luis Miguel Nieto
TI  - Supersymmetry Transformations for Delta Potentials
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a28/
LA  - en
ID  - SIGMA_2011_7_a28
ER  - 
%0 Journal Article
%A David J. Fernández C.
%A Manuel Gadella
%A Luis Miguel Nieto
%T Supersymmetry Transformations for Delta Potentials
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a28/
%G en
%F SIGMA_2011_7_a28
David J. Fernández C.; Manuel Gadella; Luis Miguel Nieto. Supersymmetry Transformations for Delta Potentials. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a28/

[1] Seba P., “Some remarks on the $\delta'$-interaction in one dimension”, Rep. Math. Phys., 24 (1986), 111–120 | DOI | MR | Zbl

[2] Kurasov P., “Distribution theory for discontinuous test functions and differential operators with generalized coefficients”, J. Math. Anal. Appl., 201 (1996), 297–323 | DOI | MR | Zbl

[3] Coutinho F. A. B., Nogami Y., Fernando Perez J., “Generalized point interactions in one-dimensional quantum mechanics”, J. Phys. A: Math. Gen., 30 (1997), 3937–3945 | DOI | MR | Zbl

[4] Toyama F. M., Nogami Y., “Transmission-reflection problem with a potential of the form of the derivative of the delta function”, J. Phys. A: Math. Theor., 40 (2007), F685–F690 | DOI | MR | Zbl

[5] Fülöp T., Tsutsui I., “A free particle on a circle with point interaction”, Phys. Lett. A, 264 (2000), 366–374, arXiv: quant-ph/9910062 | DOI | MR

[6] Hejcik P., Cheon T., “Irregular dynamics in a solvable one-dimensional quantum graph”, Phys. Lett. A, 356 (2006), 290–293, arXiv: quant-ph/0512239 | DOI | MR | Zbl

[7] Christiansen P. L., Arnbak H. C., Zolotaryuk A. V., Ermakov V. N., Gaididei Y. B., “On the existence of resonances in the transmission probability for interactions arising from derivatives of Dirac's delta function”, J. Phys. A: Math. Gen., 36 (2003), 7589–7600 | DOI | MR | Zbl

[8] Albeverio S., Gesztesy F., Høegh-Krohn R., Holden H., Solvable models in quantum mechanics, Texts and Monographs in Physics, Springer-Verlag, New York, 1988 | MR | Zbl

[9] Albeverio S., Kurasov P., Singular perturbations of differential operators. Solvable Schrödinger type operators, London Mathematical Society Lecture Note Series, 271, Cambridge University Press, Cambridge, 2000 | MR

[10] Gadella M., Kuru Ş., Negro J., “Self-adjoint Hamiltonians with a mass jump: general matching conditions”, Phys. Lett. A, 362 (2007), 265–268 | DOI | MR | Zbl

[11] Gadella M., Negro J., Nieto L. M., “Bound states and scattering coefficients of the $-a\delta(x)+b\delta'(x)$ potential”, Phys. Lett. A, 373 (2009), 1310–1313 | DOI | MR

[12] Fernández C., Palma G., Prado H., “Resonances for Hamiltonians with a delta perturbation in one dimension”, J. Phys. A: Math. Gen., 38 (2005), 7509–7518 | DOI | MR | Zbl

[13] Gadella M., Heras F. J. H., Negro J., Nieto L. M., “A delta well with a mass jump”, J. Phys. A: Math. Theor., 42 (2009), 465207, 11 pp. | DOI | MR | Zbl

[14] Álvarez J. J., Gadella M., Heras F. J. H., Nieto L. M., “A one-dimensional model of resonances with a delta barrier and mass jump”, Phys. Lett. A, 373 (2009), 4022–4027 | DOI

[15] Witten E., “Dynamical breaking of supersymmetry”, Nuclear Phys. B, 185 (1981), 513–554 | DOI

[16] Mielnik B., “Factorization method and new potentials with the oscillator spectrum”, J. Math. Phys., 25 (1984), 3387–3389 | DOI | MR | Zbl

[17] Fernández D. J., “New hydrogen-like potentials”, Lett. Math. Phys., 8 (1984), 337–343, arXiv: quant-ph/0006119 | DOI | MR

[18] Andrianov A. A., Borisov N. V., Ioffe M. V., “Quantum systems with identical energy spectra”, JETP Lett., 39 (1984), 93–97

[19] Andrianov A. A., Borisov N. V., Ioffe M. V., “The factorization method and quantum systems with equivalent energy spectra”, Phys. Lett. A, 105 (1984), 19–22 | DOI | MR

[20] Sukumar C. V., “Supersymmetric quantum mechanics of one-dimensional systems”, J. Phys. A: Math. Gen., 18 (1985), 2917–2936 | DOI | MR

[21] Sukumar C. V., “Supersymmetric quantum mechanics and the inverse scattering method”, J. Phys. A: Math. Gen., 18 (1985), 2937–2955 | MR

[22] Sukumar C. V., “Supersymmetry, potentials with bound states at arbitrary energies and multi-soliton configurations”, J. Phys. A: Math. Gen., 19 (1986), 2297–2316 | DOI | MR | Zbl

[23] Sukumar C. V., “Supersymmetry and potentials with bound states at arbitrary energies. II”, J. Phys. A: Math. Gen., 20 (1987), 2461–2481 | DOI | MR | Zbl

[24] Beckers J., Dehin D., Hussin V., “Symmetries and supersymmetries of the quantum harmonic oscillator”, J. Phys. A: Math. Gen., 20 (1987), 1137–1154 | DOI | MR | Zbl

[25] Alves N. A., Drigo Filho E., “The factorization method and supersymmetry”, J. Phys. A: Math. Gen., 21 (1988), 3215–3225 | DOI | MR

[26] Lahiri A., Roy P. K., Bagchi B., “Supersymmetry in quantum mechanics”, Internat. J. Modern Phys. A, 5 (1990), 1383–1456 | DOI | MR

[27] Roy B., Roy P., Roychoudhury R., “On solutions of quantum eigenvalue problems: a supersymmetric approach”, Fortschr. Phys., 39 (1991), 211–258 | DOI | MR

[28] de Lange O. L., Raab R. E., Operator methods in quantum mechanics, The Clarendon Press, New York; Oxford University Press, 1991 | MR

[29] Baye D., “Phase-equivalent potentials for arbitrary modifications of the bound spectrum”, Phys. Rev. A, 48 (1993), 2040–2047 | DOI

[30] Sparenberg J.-M., Baye D., “Supersymmetric transformations of real potentials on the line”, J. Phys. A: Math. Gen., 28 (1995), 5079–5095 | MR | Zbl

[31] Bagchi B., Supersymmetry in quantum and classical mechanics, Chapman Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 116, Chapman Hall/CRC, Boca Raton, FL, 2001 | MR | Zbl

[32] Cooper F., Khare A., Sukhatme U., Supersymmetry in quantum mechanics, World Scientific Publishing Co., Inc., River Edge, NJ, 2001 | MR

[33] Mielnik B., Rosas-Ortiz O., “Factorization: little or great algorithm?”, J. Phys. A: Math. Gen., 37 (2004), 10007–10035 | DOI | MR | Zbl

[34] Andrianov A. A., Cannata F., “Nonlinear supersymmetry for spectral design in quantum mechanics”, J. Phys. A: Math. Gen., 37 (2004), 10297–10321, arXiv: hep-th/0407077 | DOI | MR | Zbl

[35] Plyushchay M., “Nonlinear supersymmetry: from classical to quantum mechanics”, J. Phys. A: Math. Gen., 37 (2004), 10375–10384, arXiv: hep-th/0402025 | DOI | MR | Zbl

[36] Sukumar C. V., “Supersymmetric quantum mechanics and its applications”, AIP Conf. Proc., 744, 2005, 166–235 | MR

[37] Fernández D. J., Fernández-García N., “Higher-order supersymmetric quantum mechanics”, AIP Conf. Proc., 744, 2005, 236–273, arXiv: quant-ph/0502098 | MR

[38] Dong S.-H., Factorization method in quantum mechanics, Fundamental Theories of Physics, 150, Springer, Dordrecht, 2007 | MR

[39] Andrianov A. A., Sokolov A. V., “Factorization of nonlinear supersymmetry in one-dimensional quantum mechanics. I. General classification of reducibility and analysis of the third-order algebra”, J. Math. Sci., 143 (2007), 2707–2722, arXiv: 0710.5738 | DOI | MR

[40] Sokolov A. V., “Factorization of nonlinear supersymmetry in one-dimensional quantum mechanics. II. Proofs of theorems on reducibility”, J. Math. Sci., 151 (2008), 2924–2936, arXiv: 0903.2835 | DOI | MR

[41] Fernández D. J., “Supersymmetric quantum mechanics”, AIP Conf. Proc., 1287, 2010, 3–36, arXiv: 0910.0192 | DOI

[42] Fernández D. J., Glasser M. L., Nieto L. M., “New isospectral oscillator potentials”, Phys. Lett. A, 240 (1998), 15–20 | DOI | MR | Zbl

[43] Fernández D. J., Hussin V., Mielnik B., “A simple generation of exactly solvable anharmonic oscillators”, Phys. Lett. A, 244 (1998), 309–316 | DOI | MR | Zbl

[44] Rosas-Ortiz J. O., “New families of isospectral hydrogen-like potentials”, J. Phys. A: Math. Gen., 31 (1998), L507–L513, arXiv: quant-ph/9803029 | DOI | MR | Zbl

[45] Rosas-Ortiz J. O., “Exactly solvable hydrogen-like potentials and factorization method”, J. Phys. A: Math. Gen., 31 (1998), 10163–10179, arXiv: quant-ph/9806020 | DOI | MR | Zbl

[46] Contreras-Astorga A., Fernández D. J., “Supersymmetric partners of the trigonometric Pöschl–Teller potentials”, J. Phys. A: Math. Theor., 41 (2008), 475303, 18 pp., arXiv: 0809.2760 | DOI | MR | Zbl

[47] Díaz J. I., Negro J., Nieto L. M., Rosas-Ortiz O., “The supersymmetric modified Pöschl–Teller and delta-well potentials”, J. Phys. A: Math. Gen., 32 (1999), 8447–8460, arXiv: quant-ph/9910017 | DOI | MR | Zbl

[48] Uchino T., Tsutsui I., “Supersymmetric quantum mechanics with a point singularity”, Nuclear Phys. B, 662 (2003), 447–460, arXiv: quant-ph/0210084 | DOI | MR | Zbl

[49] Uchino T., Tsutsui I., “Supersymmetric quantum mechanics under point singularities”, J. Phys. A: Math. Gen., 36 (2003), 6821–6846, arXiv: hep-th/0302089 | DOI | MR | Zbl

[50] Fülöp T., Tsutsui I., Cheon T., “Spectral properties on a circle with a singularity”, J. Phys. Soc. Japan, 72 (2003), 2737–2746, arXiv: quant-ph/0307002 | DOI | MR

[51] Correa F., Nieto L. M., Plyushchay M. S., “Hidden nonlinear $su(2|2)$ superunitary symmetry of $N=2$ superextended 1D Dirac delta potential problem”, Phys. Lett. B, 659 (2008), 746–753, arXiv: 0707.1393 | DOI | MR

[52] Correa F., Jakubsky V., Nieto L. M., Plyushchay M. S., “Self-isospectrality, special supersymmetry, and their effect on the band structure”, Phys. Rev. Lett., 101 (2008), 030403, 4 pp., arXiv: 0801.1671 | DOI | MR

[53] Correa F., Jakubsky V., Plyushchay M. S., “Finite-gap systems, tri-supersymmetry and self-isospectrality”, J. Phys. A: Math. Theor., 41 (2008), 485303, 35 pp., arXiv: 0806.1614 | DOI | MR | Zbl

[54] Correa F., Plyushchay M. S., “Hidden supersymmetry in quantum bosonic systems”, Ann. Physics, 322 (2007), 2493–2500, arXiv: hep-th/0605104 | DOI | MR | Zbl

[55] Jakubsky V., Nieto L. M., Plyushchay M. S., “The origin of hidden supersymmetry”, Phys. Lett. B, 692 (2010), 51–56, arXiv: 1004.5489 | DOI | MR

[56] Andrianov A. A., Ioffe M. V., Spiridonov V., “Higher-derivative supersymmetry and the Witten index”, Phys. Lett. A, 174 (1993), 273–279, arXiv: hep-th/9303005 | DOI | MR

[57] Andrianov A. A., Ioffe M. V., Cannata F., Dedonder J.-P., “Second order derivative supersymmetry, $q$ deformations and the scattering problem”, Internat. J. Modern Phys. A, 10 (1995), 2683–2702, arXiv: hep-th/9404061 | DOI | MR | Zbl

[58] Bagrov V. G., Samsonov B. F., “Darboux transformation of the Schrödinger equation”, Phys. Particles Nuclei, 28 (1997), 374–397 | DOI | MR

[59] Fernández D. J., “SUSUSY quantum mechanics”, Internat. J. Modern Phys. A, 12 (1997), 171–176, arXiv: quant-ph/9609009 | DOI | MR | Zbl

[60] Flügge S., Practical quantum mechanics, Springer-Verlag, Berlin, 1999 | MR

[61] Mielnik B., Nieto L. M., Rosas-Ortiz O., “The finite difference algorithm for higher order supersymmetry”, Phys. Lett. A, 269 (2000), 70–78, arXiv: quant-ph/0004024 | DOI | MR | Zbl

[62] Fernández D. J., Salinas-Hernández E., “The confluent algorithm in second order supersymmetric quantum mechanics”, J. Phys. A: Math. Gen., 36 (2003), 2537–2543, arXiv: quant-ph/0303123 | DOI | MR | Zbl

[63] Fernández D. J., Salinas-Hernández E., “Wronskian formula for confluent second-order supersymmetric quantum mechanics”, Phys. Lett. A, 338 (2005), 13–18, arXiv: quant-ph/0502147 | DOI | MR | Zbl

[64] Fernández D. J., Muñoz R., Ramos A., “Second order SUSY transformations with ‘complex energies’”, Phys. Lett. A, 308 (2003), 11–16, arXiv: quant-ph/0212026 | DOI | MR | Zbl

[65] Rosas-Ortiz O., Muñoz R., “Non-Hermitian SUSY hydrogen-like Hamiltonians with real spectra”, J. Phys. A: Math. Gen., 36 (2003), 8497–8506, arXiv: quant-ph/0302190 | DOI | MR | Zbl

[66] Fernández-García N., Rosas-Ortiz O., “Gamow–Siegert functions and Darboux-deformed short range potentials”, Ann. Physics, 323 (2008), 1397–1414, arXiv: 0810.5597 | DOI | MR | Zbl