@article{SIGMA_2011_7_a27,
author = {Partha Guha and Anindya Ghose Choudhury and Basil Grammaticos},
title = {Dynamical {Studies} of {Equations} from the {Gambier} {Family}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a27/}
}
TY - JOUR AU - Partha Guha AU - Anindya Ghose Choudhury AU - Basil Grammaticos TI - Dynamical Studies of Equations from the Gambier Family JO - Symmetry, integrability and geometry: methods and applications PY - 2011 VL - 7 UR - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a27/ LA - en ID - SIGMA_2011_7_a27 ER -
Partha Guha; Anindya Ghose Choudhury; Basil Grammaticos. Dynamical Studies of Equations from the Gambier Family. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a27/
[1] Cariñena J. F., Guha P., Rañada M., “A geometric approach to higher-order Riccati chain: Darboux polynomials and constants of the motion”, J. Phys. Conf. Ser., 175 (2009), 012009, 15 pp. | DOI
[2] Cariñena J. F., Guha P., Rañada M., Symplectic structure, Darboux functions and higher-order time-dependent Riccati equations, unpublished
[3] Torres del Castillo G. F., “The Hamiltonian description of a second-order ODE”, J. Phys. A: Math. Theor., 43 (2009), 265202, 9 pp. | DOI | MR
[4] Duarte L. G. S., Moreira I. C., Santos F. C., “Linearization under non-point transformations”, J. Phys. A: Math. Gen., 27 (1994), L739–L743 | MR | Zbl
[5] Ermakov V. P., “Second-order differential equations. Conditions of complete integrability”, Univ. Isz. Kiev Series III, 20:9 (1880), 1–25, translation by A. O. Harin | MR
[6] Fris J., Mandrosov V., Smorodinsky Ya. A., Uhlir M., Winternitz P., “On higher symmetries in quantum mechanics”, Phys. Lett., 16 (1965), 354–356 | DOI | MR
[7] Fokas A. S., Yang D., On a novel class of integrable ODEs related to the Painlevé equations, arXiv: 1009.5125
[8] Gambier B., “Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est a points critique fixes”, Acta Math., 33 (1910), 1–55 | DOI | MR
[9] Ghose Choudhury A., Guha P., “On isochronous cases of the Cherkas system and Jacobi's last multiplier”, J. Phys. A: Math. Theor., 43 (2010), 125202, 12 pp. | DOI | MR | Zbl
[10] Grammaticos B., Ramani A., “The Gambier mapping”, Phys. A, 223 (1996), 125–136, arXiv: solv-int/9510010 | DOI | MR | Zbl
[11] Grammaticos B., Ramani A., Lafortune S., “The Gambier mapping, revisted”, Phys. A, 253 (1998), 260–270, arXiv: solv-int/9804011 | DOI | Zbl
[12] Guha P., “Stabilizer orbit of Virasoro action and integrable systems”, Int. J. Geom. Methods Mod. Phys., 2 (2005), 1–12 | DOI | MR | Zbl
[13] Ince E. L., Ordinary differential equations, Dover Publications, New York, 1944 | MR | Zbl
[14] Jacobi C. G. J., “Sul principio dell'ultimo moltiplicatore, e suo uso come nuovo principio generale di meccanica”, Giornale Arcadico di Scienze, Lettere ed Arti, 99 (1844), 129–146
[15] Makarov A. A., Smorodinsky Ya. A., Valiev Kh., Winternitz P., “A systematic search for non-relativistic system with dynamical symmetries”, Nuovo Cim. A, 52 (1967), 1061–1084 | DOI
[16] Milne W. E., “The numerical determination of characteristic numbers”, Phys. Rev., 35 (1930), 863–867 | DOI
[17] Painlevé P., “Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme”, Acta Math., 25 (1902), 1–85 | DOI | MR
[18] Pinney E., “The nonlinear differential equation $y^{\prime\prime}+p(x)y+cy^{-3}=0$”, Proc. Amer. Math. Soc., 1 (1950), 681–681 | DOI | MR | Zbl
[19] Ramani A., Grammaticos B., Tamizhmani T., “Quadratic relations in continuous and discrete Painlevé equations”, J. Phys. A: Math. Gen., 33 (2000), 3033–3044 | DOI | MR | Zbl
[20] Sugai I., “Riccati's nonlinear differential equation”, Am. Math. Monthly, 67 (1960), 134–139 | DOI | MR | Zbl
[21] Sundman K. F., “Mémoire sur le problèm des trois corps”, Acta Math., 36 (1912), 105–179 | DOI | MR | Zbl
[22] Tsuda T., Okamoto K., Sakai H., “Folding transformations of the Painlevé equations”, Math. Ann., 331 (2005), 713–738 | DOI | MR | Zbl
[23] Yang D., On conjugate Hamiltonian systems. I. The finite dimensional case, unpublished