Two Point Correlation Functions for a Periodic Box-Ball System
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate correlation functions in a periodic box-ball system. For the second and the third nearest neighbor correlation functions, we give explicit formulae obtained by combinatorial methods. A recursion formula for a specific $N$-point functions is also presented.
Keywords: correlation function; box-ball system.
@article{SIGMA_2011_7_a26,
     author = {Jun Mada and Tetsuji Tokihiro},
     title = {Two {Point} {Correlation} {Functions} for {a~Periodic} {Box-Ball} {System}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a26/}
}
TY  - JOUR
AU  - Jun Mada
AU  - Tetsuji Tokihiro
TI  - Two Point Correlation Functions for a Periodic Box-Ball System
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a26/
LA  - en
ID  - SIGMA_2011_7_a26
ER  - 
%0 Journal Article
%A Jun Mada
%A Tetsuji Tokihiro
%T Two Point Correlation Functions for a Periodic Box-Ball System
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a26/
%G en
%F SIGMA_2011_7_a26
Jun Mada; Tetsuji Tokihiro. Two Point Correlation Functions for a Periodic Box-Ball System. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a26/

[1] Takahashi D., Satsuma J., “A soliton cellular automaton”, J. Phys. Soc. Japan, 59 (1990), 3514–3519 | DOI | MR

[2] Yura F., Tokihiro T., “On a periodic soliton cellular automaton”, J. Phys. A: Math. Gen., 35 (2002), 3787–3801, arXiv: nlin.SI/0112041 | DOI | MR | Zbl

[3] Fukuda K., Okado M., Yamada Y., “Energy functions in box ball systems”, Internat. J. Modern Phys. A, 15 (2000), 1379–1392, arXiv: math.QA/9908116 | DOI | MR | Zbl

[4] Hatayama G., Hikami K., Inoue R., Kuniba A., Takagi T., Tokihiro T., “The $A_M^{(1)}$ automata related to crystals of symmetric tensors”, J. Math. Phys., 42 (2001), 274–308, arXiv: math.QA/9912209 | DOI | MR | Zbl

[5] Mada J., Tokihiro T., “Correlation functions for a periodic box-ball system”, J. Phys. A: Math. Theor., 43 (2010), 135205, 15 pp., arXiv: 0911.3953 | DOI | MR | Zbl

[6] Jimbo M., Miwa T., “Quantum KZ equation with $|q|=1$ and correlation functions of the $XXZ$ model in the gapless regime”, J. Phys. A: Math. Gen., 29 (1996), 2923–2958 | DOI | MR | Zbl

[7] Mada J., Idzumi M., Tokihiro T., “The exact correspondence between conserved quantities of a periodic box-ball system and string solutions of the Bethe ansatz equations”, J. Math. Phys., 47 (2006), 053507, 18 pp. | DOI | MR | Zbl

[8] Torii M., Takahashi D., Satsuma J., “Combinatorial representation of invariants of a soliton cellular automaton”, Phys. D, 92 (1990), 209–220 | DOI | MR